

Morecambe Offshore Windfarm: Generation Assets Environmental Statement

Volume 5

Appendix 9.1 Benthic Characterisation Survey

Document History

Doc No	oc No MOR001-FLO-CON-ENV-RPT-1091		01
Alt Doc No OEL_FLOMOR0222_TCR			
Document Status Approved for Use		Doc Date	May 2024
PINS Doc Ref	5.2.9.1	APFP Ref	5(2)(a)

Rev	Date	Doc Status	Originator	Reviewer	Approver	Modifications
01	May 2024	Approved for Use	Ocean Ecology Limited	Morecambe Offshore Windfarm Ltd	Morecambe Offshore Windfarm Ltd	n/a

Ocean Ecology

Marine Surveys, Analysis & Consultancy

Morecambe Offshore Wind Farm Benthic Characterisation Survey Technical Report 2022

REF: OEL_FLOMOR0222_TCR

FLO-MOR-REP-0010

Details

Version	Date	Description	Author(s)	Reviewed By
V03	11/10/2022	Updated following client review	Samuel Holmes, Elena Cappelli	Ross Griffin

Updates

Section	Description	
7.7	Removed reference to shapefile appendix	65
-	Added Appendix XIX to list	6

Contents

List of A	\bbreviations	8
Non-Te	chnical Summary	10
1. Inti	oduction	12
1.1.	Project Overview	12
1.2.	Background Information	12
1.3.	Aims and Objectives	12
2. Des	ignated Sites	14
3. Exis	sting Data	14
3.1.	EMODnet Habitat Mapping	14
3.2.	Geophysical Data	14
4. Sur	vey Design	17
4.1.	Sampling Rationale	17
4.2.	Summary of Sampling	18
5. Fiel	d Methods	
5.1.	Survey Vessel	
5.2.	Geodetic Parameters	23
5.3.	Survey Equipment	24
5.3.		
5.3.2		
5.3.3		
6. Lab	oratory and Analytical Methods	
6.1.	Particle Size Distribution (PSD) Analysis	
6.1.	1. Sample Preparation	27
6.1.2	2. Dry Sieving	28
6.1.3	3. Laser Diffraction	28
6.1.4	4. Data Merging	28
6.2.	Sediment Chemical Analysis	29
6.2.	1. Hydrocarbons	29
6.2.2	2. Heavy and Trace Metals	
6.3.	Macrobenthic Analysis	31
6.4.	Macrobenthic Data Analysis	32
6.4.	1. Data Truncation and Standardisation	32
6.4.2		
6.4.3		
6.4.4	4. Multivariate Statistics	33
6.5.	Determining EUNIS Classifications	33

6.6. 6.6.1. 6.6.2. 6.7. 7. 7.1. 7.1.1. 7.1.2 7.2. Sediment Chemistry......41 7.2.1. 7.2.2. 7.2.3. Polycyclic Aromatic Hydrocarbons (PAHs) and Total Hydrocarbons (THC)47 7.2.4. 7.2.5. 7.3. 7.3.1. 7.3.2. 7.4. Macrobenthic Faunal Groupings56 7.4.1. 7.5. 7.6. 7.7. 8.1. 8.2. Macrobenthos70 8.3. Seabed Imagery.....71 8.4. Habitats of Conservation Value......71 8.5. Habitat/Biotope Mapping71 9.

List of Figures

Figure 1 The location and project layout of the proposed Morecombe OWF in the Northeast
Irish Sea
Figure 2 EMODnet predictive habitat mapping showing EUNIS BSH for the MOWF site 15
Figure 3 Overview of the MOWF site, results of the 2021 geophysical survey campaign (MBES
and SSS) used to inform sampling design and identify features of interest for the DDC
investigations
Figure 4 Locations of MOWF DDC and grab sampling stations
Figure 5 Locations of MOWF DDC transects
Figure 6 Folk (1954) triangle classifications of sediment gravel percentage and sand to mud
ratio of samples collected across the Morecambe OWF survey area
Figure 7 Folk (1954) sediment types as determined from PSD analysis of samples
Figure 8 Principal sediment components (Gravel, Sand, Mud) as determined from PSD analysis
of stations sampled across the Morecambe OWF survey area
Figure 9 Comparison of mean sediment grain size (μ m) of sediment samples
Figure 10 Percentage contribution of TOC across the MOWF survey area
Figure 11 Percentage contribution of TOM across the MOWF survey area
Figure 12 Concentration of the key heavy and trace metals sampled across the MOWF survey
area. Note different scales
Figure 13 Concentration (μ g kg ⁻¹) of key PAHs against BAC across the survey area
Figure 14 PAHs based indices and THC across the survey area
Figure 15 Percentage contributions of the top 10 macrobenthic taxa to total abundance (a)
and occurrence (b) from samples collected across the MOWF survey area. Also shown are the
maximum densities of the top 10 taxa per sample (c) and average densities of the top 10 taxa
per sample (d)
Figure 16 Relative contribution of the major taxonomic groups to the total abundance,
diversity and biomass of the macrobenthos sampled across the MOWF survey area
Figure 17 Abundance, diversity and biomass (gAFDW) per station across the MOWF survey
area
Figure 18 Two-dimensional nMDS ordination of macrobenthic communities sampled across
the MOWF survey area, based on square root transformed and Bray-Curtis similarity
abundance data. Macrobenthic Groups were identified at 31 % similarity
Figure 19 Spatial distribution of macrobenthic groups as determined from cluster analysis of
abundance data
Figure 20 EUNIS habitats encountered across the MOWF survey area
Figure 21 Density of burrows (per m ²) and abundance of burrowing megafauna across the
MOWF survey area
Figure 22 EUNIS Biotopes as determined from interrogation of sediment and macrobenthic
data

List of Tables

Table 1 Overview of grab locations by predicted Broad Scale Habitat (BSH) and contaminant
samples across the windfarm site
Table 2 Summary of sampling stations surveyed during the Morecambe OWF survey
Table 3 Geodetic parameters used during the survey
Table 4 Equipment utilised onboard the Seren Las
Table 5. Sieve series employed for Particle Size Distribution (PSD) analysis by dry sieving (mesh
size in mm)
Table 6. Classification used for defining sediment type based on the Wentworth Classification
System (Wentworth 1922)
Table 7 Characteristics of stony reef (Irving 2009). 34
Table 8 Characteristics of Sabellaria spinulosa reef (Gubbay 2007). 35
Table 9 Main Heavy and trace metals (mg kg ⁻¹) in sediments. Shading indicates values above
AL1
Table 10 Number of stations across the Morecambe OWF site exhibiting elevated PAHs levels
in comparison with OSPAR and Canadian Sediment Quality Guidelines (CSQG). No PAHs
exceeded Cefas AL1 or CSQG levels
Table 11 EUNIS classifications (both 2012 and 2022 codes) identified within the Morecambe
Bay OWF Benthic Survey area
Table 12 Comparison of mean concentrations of key metals (mgkg ⁻¹) and PAHs (μ gkg ⁻¹)
sampled across the Morecambe OWF site with previous records from OSPAR (2022)70

List of Appendices

A	p	pendix	I –	Pro	ject	Execution	Plan
---	---	--------	-----	-----	------	-----------	------

- Appendix II Methods for the analysis of sediment chemistry
- Appendix III Analytical Routines
- Appendix IV Morecambe Bay OWF drop-down camera video survey logs
- Appendix V Morecambe Bay OWF drop-down camera stills survey logs
- Appendix VI Morecambe Bay OWF grab survey logs
- Appendix VII Morecambe Bay OWF grab sample photos.

Appendix VIII - PSD raw data

- Appendix IX PSD summary data
- Appendix X Sediment Contaminants

- Appendix XI Macrobenthic raw data
- Appendix XII Macrobenthic Biomass Ash Free Dry Weight
- Appendix XIII Dendrogram resulting from cluster analysis
- Appendix XIV Results of SIMPER analysis
- Appendix XV Seabed Imagery still logs
- Appendix XVI Seabed Imagery video logs
- Appendix XVII Seapen and burrowing megafauna assessment
- Appendix XVIII Biotoping
- Appendix XIX Response to NE?MMO comments

AIS	Automatic Identification System
BSH	Broadscale Habitat
DDC	Drop Down Camera
EB	Environmental Baseline
EBS	Environmental Baseline Survey
EIA	Environmental Impact Assessment
EMODnet	European Marine Observation and Data Network
EUNIS	European Nature Information System
EQS	Environmental Quality Standards
FLOW	Floating Offshore Wind Farm
FOCI	Features of Conservation Interest
GPS	Global Positioning System
НА	Habitat Assessment
HA IUCN	Habitat Assessment International Union for Conservation of Nature
IUCN	International Union for Conservation of Nature
IUCN JNCC	International Union for Conservation of Nature Joint Nature Conservation Committee
IUCN JNCC MBES	International Union for Conservation of Nature Joint Nature Conservation Committee Multibeam Echosounder
IUCN JNCC MBES MCZ	International Union for Conservation of Nature Joint Nature Conservation Committee Multibeam Echosounder Marine Conservation Zone
IUCN JNCC MBES MCZ MHWS	International Union for Conservation of Nature Joint Nature Conservation Committee Multibeam Echosounder Marine Conservation Zone Mean High Water Springs
IUCN JNCC MBES MCZ MHWS MLWS	International Union for Conservation of Nature Joint Nature Conservation Committee Multibeam Echosounder Marine Conservation Zone Mean High Water Springs Mean Low Water Springs
IUCN JNCC MBES MCZ MHWS MLWS MNCR	International Union for Conservation of Nature Joint Nature Conservation Committee Multibeam Echosounder Marine Conservation Zone Mean High Water Springs Mean Low Water Springs Marine Habitat Classification for Britain and Ireland
IUCN JNCC MBES MCZ MHWS MLWS MNCR MOWF	International Union for Conservation of Nature Joint Nature Conservation Committee Multibeam Echosounder Marine Conservation Zone Mean High Water Springs Mean Low Water Springs Marine Habitat Classification for Britain and Ireland Morecambe Offshore Wind Farm

- PAH Polycyclic Aromatic Hydrocarbon
- PEP Project Execution Plan
- PSA Particle Size Analysis
- PSD Particle Size Distribution
- SAC Special Area of Conservation
- SBE Simply Blue Energy
- SPA Special Protection Area
- SSS Side Scan Sonar
- SSSI Site of Special Scientific Interest
- THC Total Hydrocarbons Content
- **TOC** Total Organic Carbon
- TOM Total Organic Matter
- TPH Total Petroleum Hydrocarbons
- WTGs Wind Turbines Generators

Non-Technical Summary

Introduction

Morecambe Offshore Windfarm is a proposed offshore windfarm located in the Northeast Irish Sea with an expected nominal capacity of 480 megawatts. Offshore Wind Ltd (OWL): a joint venture between Cobra Instalaciones y Servicios, S.A., and Flotation Energy plc, contracted Ocean Ecology Limited (OEL) to undertake a benthic characterisation survey of the Morecambe Offshore Windfarm site as there is a requirement for baseline information on the sediment quality and benthic habitats from within the proposed wind farm site to be collected to inform project design and the Environmental Impact Assessment.

Survey Strategy

50 stations were sampled first with Drop-Down Camera methods before sediment grab sampling using a 0.1m² Day Grab. Sediment samples were collected for particle size and macrobenthic analyses at all 50 stations, with a subset of 20 stations sampled for sediment contaminants. All survey work was conducted onboard the dedicated survey vessel *Seren Las*. An Ultra-Short Baseline System was used to provide accurate subsea positioning of sampling locations.

Sediments

Most sampling stations (27 of 50) were classified as Muddy Sand, however some variation in sediment type was observed between sampling stations whereby stations located towards the west and southwest of the windfarm site were characterised by slightly coarser sediments. Mean sediment grain size across the windfarm site ranged from 35.5 μ m to 536.1 μ m.

Relatively high Total Organic Carbon and Total Organic Matter content, by comparison to other stations sampled within this survey, was observed at stations located to the east of the windfarm site. Trace and heavy metal concentrations were overall low across the windfarm site with none of the metals analysed exceeding any of the reference level. In general metal concentrations were relatively higher to the east, closer to land than at stations further offshore, as seen for TOC and TOM. Among all Polycyclic Aromatic Hydrocarbons (PAHs), Naphthalene, Pyrene, Anthracene and Benzo[a]anthracene were the ones found to exceed reference levels at 5 to 6 stations. No other PAHs exceeded any reference levels. Stations with relatively elevated PAH concentrations also had relatively high TOC, TOM and metals concentrations. Total hydrocarbon concentration was also found to be relatively higher to the east of the survey area.

Macrobenthos

Macrobenthic assemblages identified across the Morecambe Offshore Windfarm site were made up of a total of 8,127 individuals and 189 different taxa. Most stations were characterised by the presence of *K. bidentata* which occurred in 88 % of samples. Other key taxa included the brittle star *Amphiura filiformis*, the polychaetes *Sthenelais limicola* and *Scalibregma inflatum*. Macrobenthic abundance and diversity varied across the windfarm site however no obvious pattern was observed across stations.

EUNIS Habitats/Biotopes

Sediment particle size distribution and macrobenthic data clearly indicated the presence of two biotopes across the survey area: A5.252 '*Abra prismatica*, *Bathyporeia elegans* and polychaetes in circalittoral fine sand' in the middle and to the east of the windfarm site, and A5.351 '*Amphiura filiformis*, *Mysella bidentata* and *Abra nitida*' in circalittoral sandy mud' to the west of the windfarm site.

Annex I Habitats

No Annex I habitats were identified within the windfarm site.

Other Features of Interest

Large areas of the OSPAR threatened and/ or declining habitat 'Sea-pens and burrowing megafauna' were identified across the windfarm site within the EUNIS habitat A5.26. Sea-pens and burrowing megafauna is considered a priority habitat listed under Section 41 of the Natural Environment and Rural Communities Act 2006, as well as a Marine Conservation Zone Feature of Conservation Interest.

1. Introduction

1.1. Project Overview

Morecambe Offshore Windfarm (the Project) is a proposed offshore windfarm (OWF) located in the Northeast Irish Sea (Figure 1) with an expected nominal capacity of 480 megawatts (MW). The Project is being developed by Offshore Wind Limited (OWL): a joint venture between Cobra Instalaciones y Servicios, S.A., and Flotation Energy plc. The windfarm site is located approximately 30 km from the Lancashire coast, with water depths in the windfarm site ranging between 18 and 40 m.

1.2. Background Information

OWL contracted Ocean Ecology Limited (OEL) to undertake a benthic characterisation survey of the Project windfarm site as there is a requirement for baseline information on the sediment quality and benthic habitats from within the proposed windfarm site to be collected to inform project design and the Environmental Impact Assessment (EIA).

The Project export cable route is not included in this report and will be subject to a separate survey and consent process in association with the Project transmission assets. Therefore, all survey works covered in this report were located within the windfarm site.

1.3. Aims and Objectives

The key focus of the benthic characterisation survey was to provide accurate ground truthing to the geophysical data collected within the windfarm site in 2021 (provided to OEL by OWL) using a combination of Drop-Down Camera (DDC) and sediment grab sampling. As well as ground truthing the geophysical data, this survey will be used to characterise the environmental baseline and assign habitats across the site for the purpose of Environmental Impact Assessment (EIA).

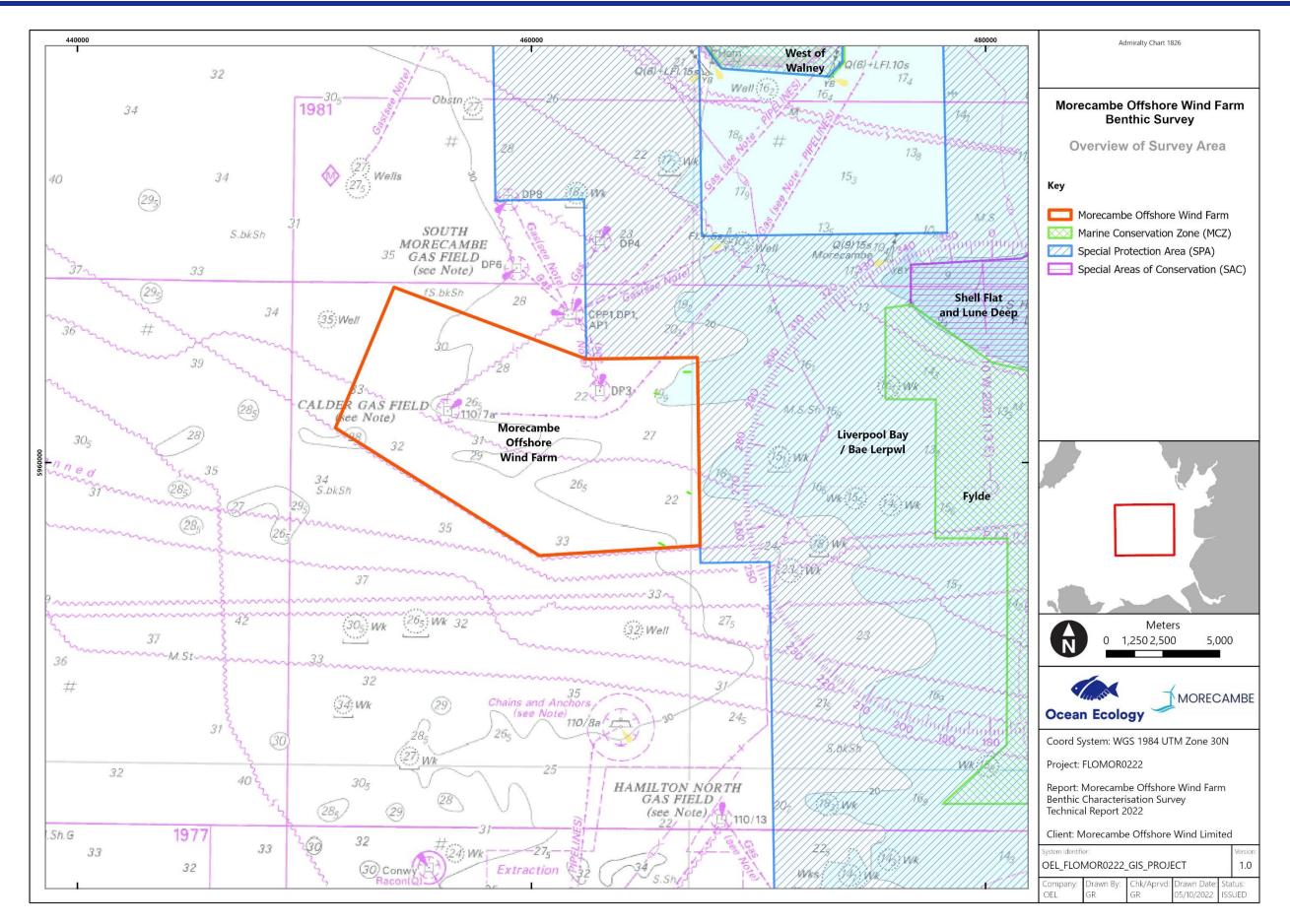


Figure 1 The location of the proposed Morecambe OWF site in the Northeast Irish Sea.

OEL

2. Designated Sites

The windfarm site is located to the immediate west of the Liverpool Bay / Bae Lerpwl Special Protection Area (SPA) with its northern and eastern boundaries adjoining but not intersecting that of the SPA (Figure 1). Liverpool Bay / Bae Lerpwl SPA is in the east of the Irish Sea, bordering the coastlines of north-west England and north Wales. The boundary of Liverpool Bay / Bae Lerpwl SPA extends beyond 12 nautical miles and therefore lies partly in Welsh and English territorial waters and partly in offshore waters.

The Liverpool Bay / Bae Lerpwl SPA is designated for the protection of red-throated diver (*Gavia stellata*), common scoter (*Melanitta nigra*), and little gull (*Hydrocoloeus minutus*) in the nonbreeding season; common tern (*Sterna hirundo*) and little tern (*Sterna albifrons*) in the breeding season, and as an internationally important waterbird assemblage.

Further to the east of the windfarm site are the Fylde Marine Conservation Zone (MCZ), and the Shell Flat and Lune Deep Special Area of Conservation (SAC) (Figure 1).

3. Existing Data

3.1. EMODnet Habitat Mapping

The EMODnet broad-scale seabed habitat map (EMODnet 2021) for Europe is a comprehensive, free and ready-to-use broad-scale map of physical habitats, harmonising mapping procedures and fostering a common understanding among seabed mappers in Europe. This indicates that the windfarm site is dominated by the following sediment habitats including European Nature Information System (EUNIS) classifications A5.25/A5.26 'Circalittoral fine sand' / 'Circalittoral muddy sand', A5.27 'Deep circalittoral sand', A5.35 'Circalittoral sand mud' and A5.37 'Deep circalittoral mud' (Figure 2).

3.2. Geophysical Data

Full coverage acoustic data was collected across the windfarm site during a geophysical survey campaign in 2021 and was provided to OEL in processed format for consideration during the survey design (see PEP, Appendix I). This included side-scan sonar (SSS) and multi-beam echosounder (MBES) bathymetry at 1 m resolution (Figure 3).

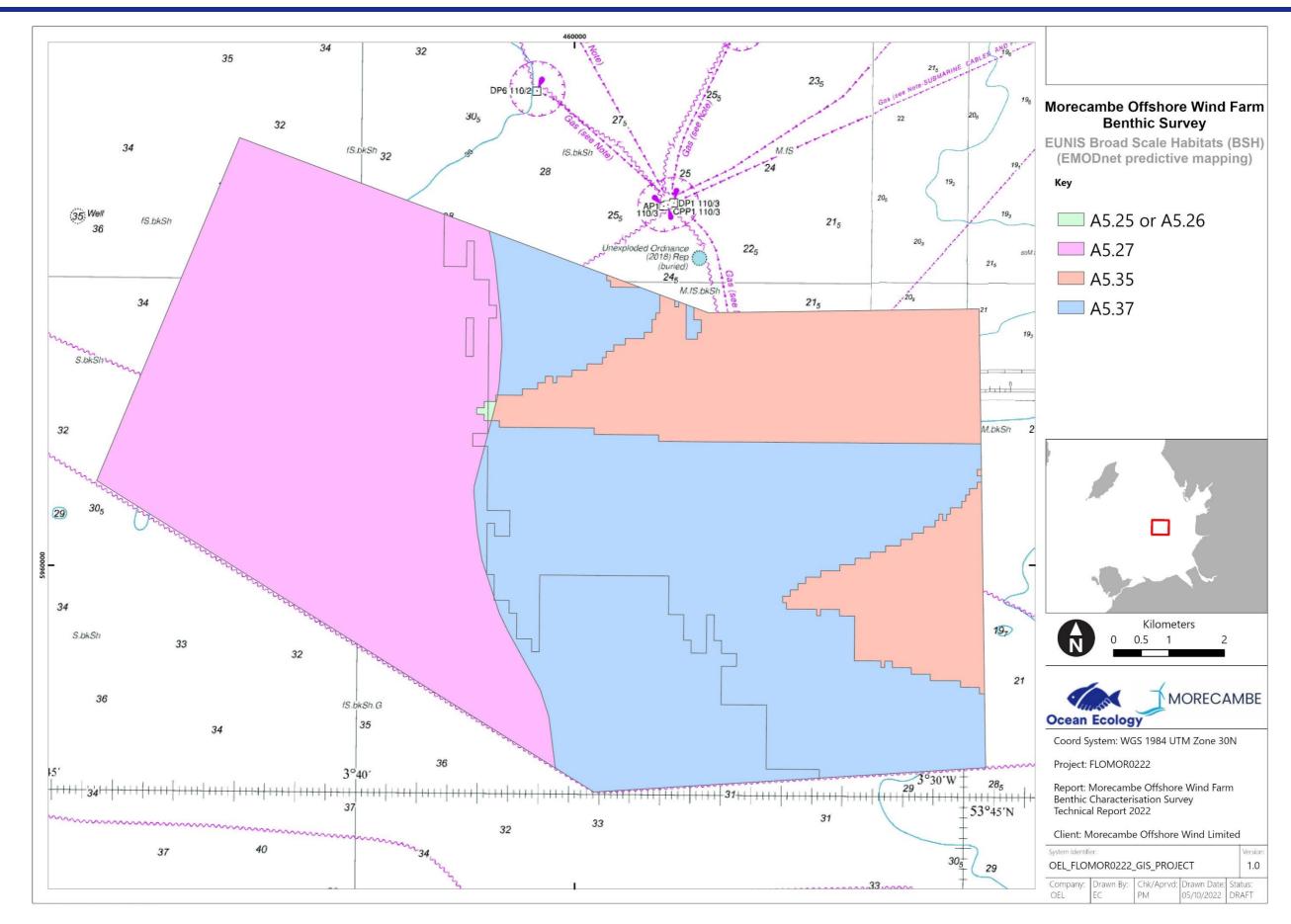


Figure 2 EMODnet predictive habitat mapping showing EUNIS BSH for the Morecambe OWF site.

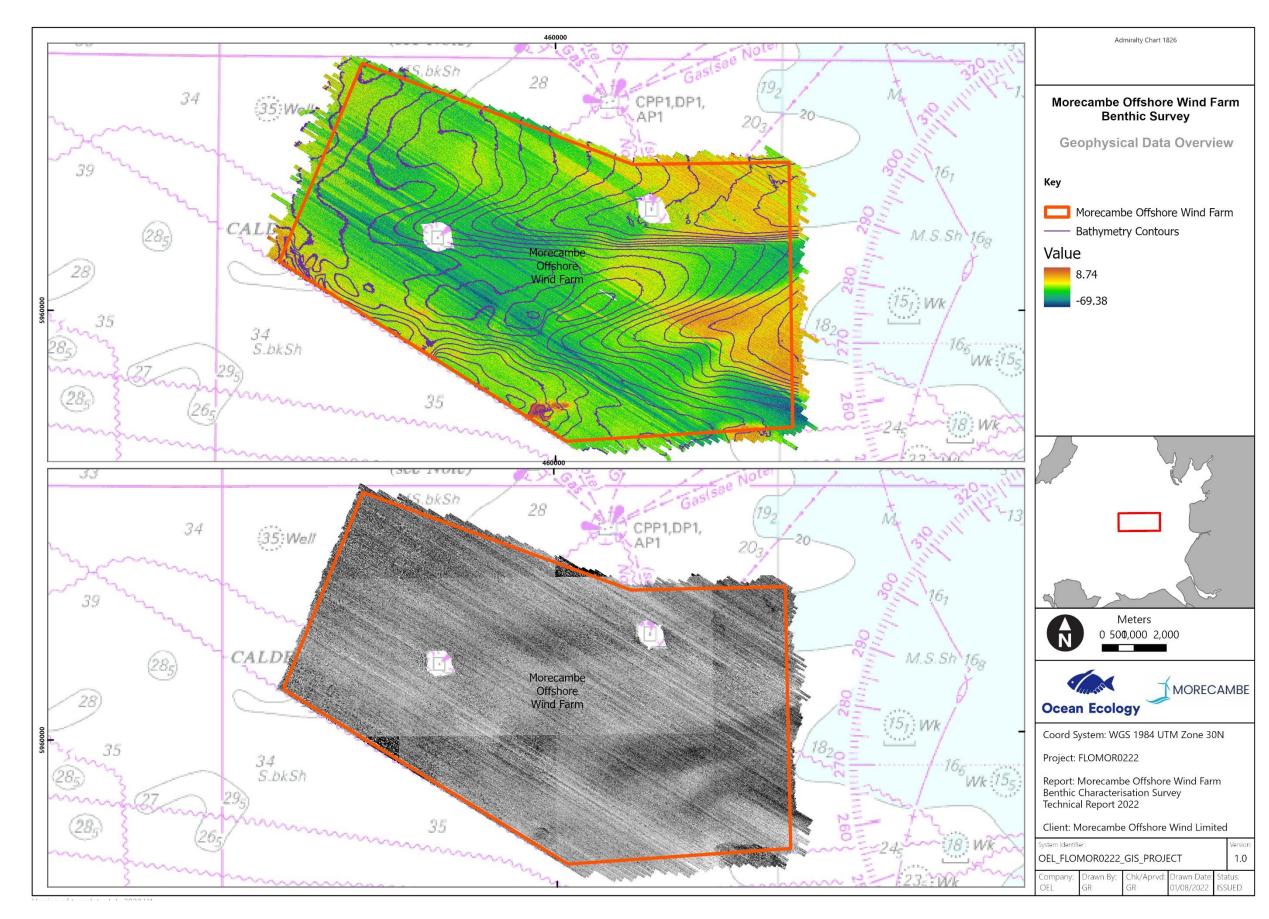


Figure 3 Overview of the Morecambe OWF site, results of the 2021 geophysical survey campaign (MBES and SSS) used to inform sampling design and identify features of interest for the DDC investigations.

4. Survey Design

4.1. Sampling Rationale

The benthic sampling plan was developed in line with Phase I of Natural England's (NE) "Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards" (Natural England 2021a) to provide maximum geographic coverage of the proposed windfarm site, whilst also ensuring that all key habitats and communities likely to be encountered across the windfarm site were adequately targeted. The key principles underpinning the survey design were therefore to:

- Provide adequate spatial coverage of the windfarm site.
- Ensure representative sampling of all main sediment types was undertaken.
- Ensure representative examples of all potential features of conservation interest (e.g., Annex I reef) were adequately ground-truthed.

The sampling plan was produced based on a stratified sampling approach across the windfarm site with micrositing of sampling stations informed by a detailed review and interpretation of the outputs of the 2021 geophysical campaign and consideration for all surface, subsurface and subsea hazards and their respective exclusion / buffer zones. Table 1 lists sediment types present across the windfarm site as per EMODnet predicted Broad Scale Habitat (BSH) and targeted during the environmental survey.

 Table 1 Overview of grab locations by predicted Broad Scale Habitat (BSH) and contaminant samples across the windfarm site.

Predicted BSH	No. of Grab Locations	No. of Contaminant Samples
A5.1 - Sublittoral Coarse Sediment	12	4
A5.2 - Sublittoral Sand	38	16
A5.2 - Sublittoral Sand / A5.1 - Sublittoral Coarse Sediment	1	1

The sampling plan was issued to and approved by OWL in the form of a Project Execution Plan (PEP) prior to the commencement of the survey (Appendix I). This PEP was also shared with regulatory stakeholders including NE and The Marine Management Organisation (MMO). Return comments were provided by NE however no comments were received from the MMO prior to the survey. Full details of the procedure and rationale for the design of the final sampling array is set out in the PEP, provided as Appendix I, and not repeated here. Responses to the NE and MMO comments received on the PEP and incorporated in this report are provided in Appendix XIX.

4.2. Summary of Sampling

In summary, the sampling array included:

- 50 stations sampled with a 0.1m² Day grab with prior investigation by DDC. Samples collected were to be suitable for Particle-size distribution (PSD) and macrobenthic analyses. Only single PSD and faunal samples were required from each site.
- Contaminant samples taken at 20 selected sampling locations.
- DDC deployments undertaken at each grab location to: i) determine the suitability of the station for grab samples (i.e., no hazards or sensitive habitat) and ii) provide an indication of the epibenthos at each location.
- Four DDC transects across the site to ground truth geophysical data and identify any features of interest.

A summary of sampling stations is provided in Table 2 and presented spatially in Figure 4, Figure 5.

Station I.D.	Target Easting	Target Northing	Notes
ST01	459526.752	5956923.006	
ST02	461209.685	5957188.416	
ST03	462611.030	5957149.039	
ST04	464111.030	5957149.039	
ST05	465611.030	5957149.039	
ST06	466873.419	5956911.428	
ST07	455127.525	5959655.225	
ST08	456611.030	5959649.039	
ST09	464135.247	5964444.396	
ST10	459611.030	5959649.039	
ST11	461377.879	5958604.849	
ST12	462611.030	5959649.039	
ST13	464297.252	5959542.956	
ST14	465582.517	5958537.019	
ST15	466517.251	5959273.583	
ST16	452111.030	5962149.039	
ST17	453611.030	5962149.039	
ST18	455563.417	5961670.060	
ST19	458092.235	5961650.961	
ST20	459648.621	5961622.767	
ST21	461120.428	5961571.479	
ST22	462287.113	5963151.507	
ST23	464161.071	5962091.300	
ST24	465663.487	5962198.327	
ST25	467111.030	5962149.039	
ST26	453370.566	5964598.521	
ST27	455111.030	5964649.039	
ST28	456611.030	5964649.039	
ST29	458003.250	5964768.367	
ST30	459884.226	5964483.519	
ST31	461111.030	5964649.039	
ST32	455111.030	5967149.039	
ST33	-	-	DDC only – no permission to sample
ST34	463263.110	5958542.026	
ST35	462097.091	5956369.826	
ST36	453971.505	5966373.181	
ST37	456155.158	5965962.777	
ST38	463257.635	5961074.951	
ST39	459657.190	5963366.583	
ST40	466977.917	5962892.013	

 Table 2
 Summary of sampling stations surveyed during the Morecambe OWF survey.

Station I.D.	Target Easting	Target Northing	Notes
ST41	458167.160	5959119.766	
ST42	458536.783	5958351.464	
ST43	453474.193	5960836.048	
ST44	455242.801	5963558.811	
ST45	466045.552	5960487.933	
ST46	466787.669	5963994.446	
ST47	465505.971	5963037.928	
ST48	455363.366	5962442.488	
ST49	463631.928	5963230.410	
ST50	465249.064	5956469.728	
ST51	466934.211	5958665.120	Backup contaminant samples also taken at ST51 but not required for analysis.
TR01	465613.196	5956461.600	
TR02	467011.285	5964000.584	
TR03	465580.148	5963024.434	
TR04	459422.455	5956927.820	

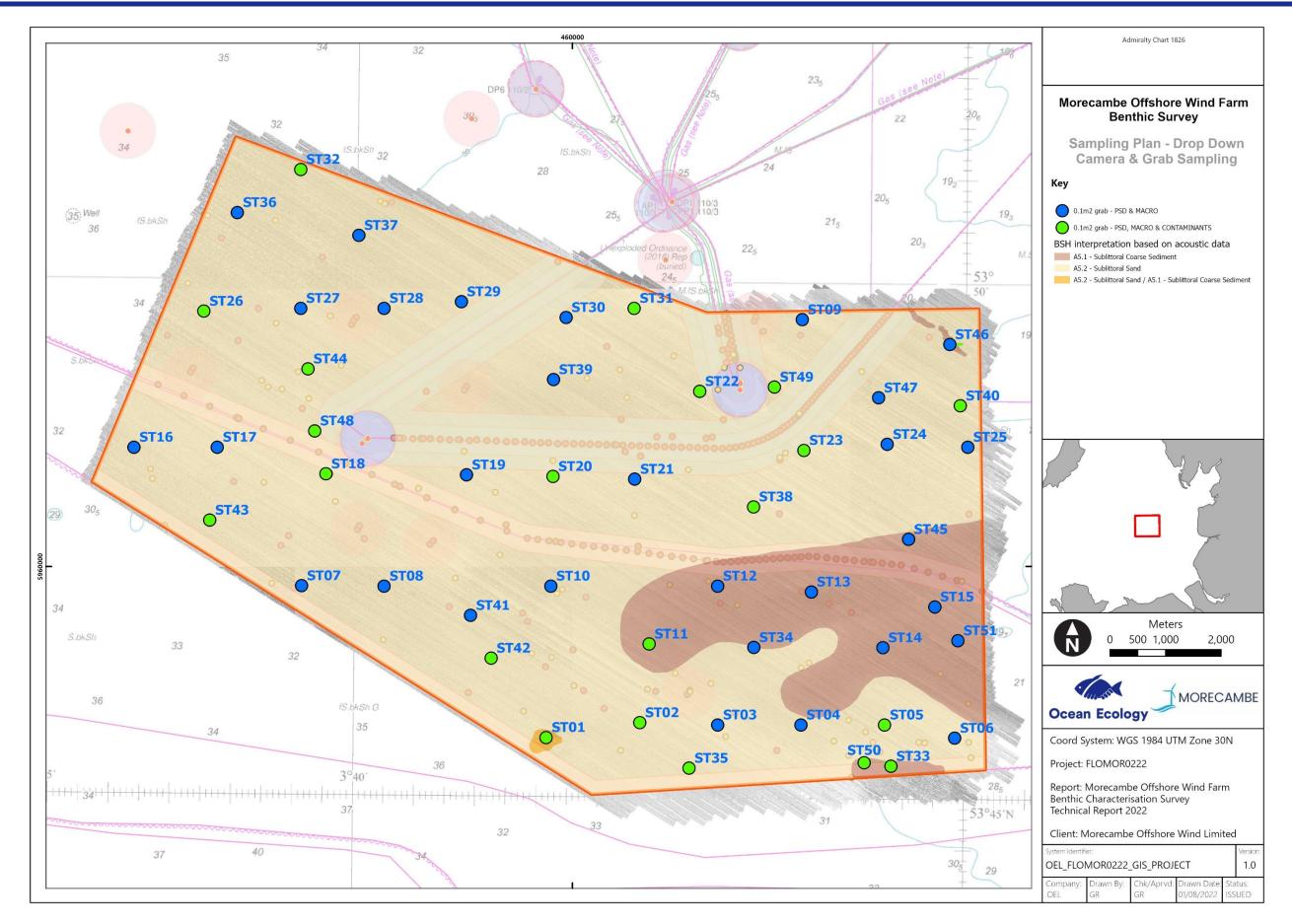


Figure 4 Locations of Morecambe OWF site DDC and grab sampling stations.

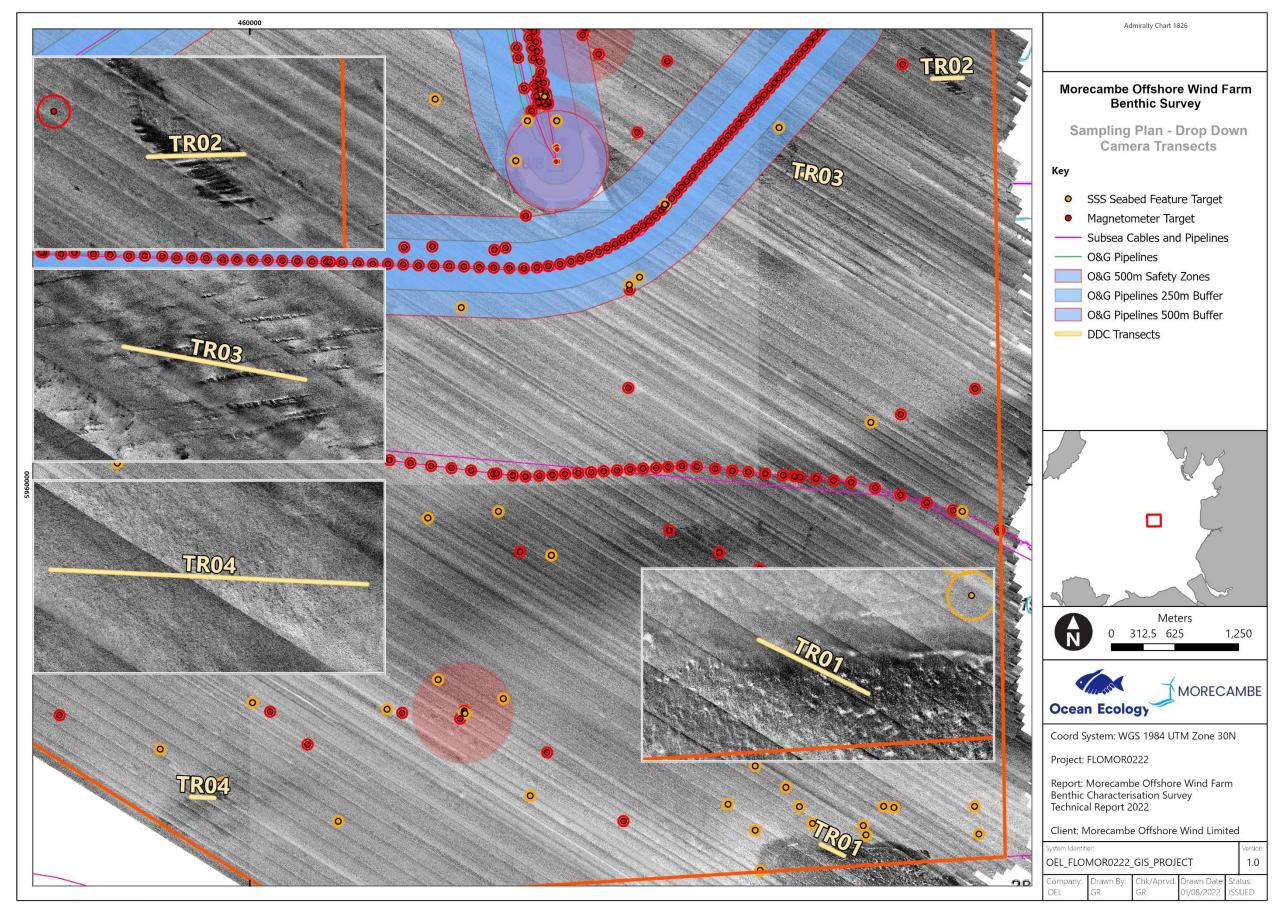


Figure 5 Locations of Morecambe OWF site DDC transects.

OEL

5. Field Methods

5.1. Survey Vessel

All sampling was conducted aboard OEL's dedicated 10.4 m Marine and Coastal Agency (MCA) category 2 coded survey vessel '*Seren Las*' (Plate 1). The vessel was equipped with a Hemisphere V104s GPS Compass system that provided a Global Positioning System (GPS) feed to a dedicated survey navigation PC operating EIVA NaviPac and TimeZero Navigator v4 marine navigation with routing module and SeaTraceR Class B AIS.

Plate 1 Nearshore survey vessel 'Seren Las'.

5.2. Geodetic Parameters

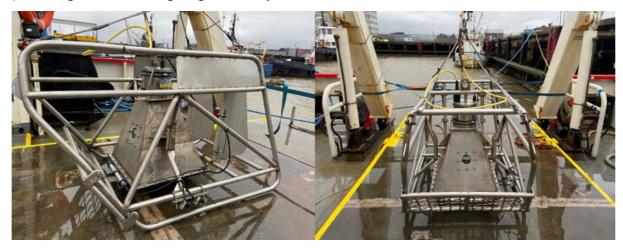
All coordinates were based on World Geodetic System 1984 (WGS 1984) with projected grid coordinates based on Universal Transverse Mercator (UTM) zone 30N with a Central Meridian of 03°W. A summary of geodetic and projection parameters is provided in Table 3.

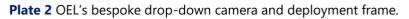
Table 3 Geodetic parameters used during the survey.

Local geodetic Datum Parameters						
Datum	Norld Geodetic System 1984 (WGS 1984)					
Spheroid	WGS 1984					
Project Projection Parameters						
Grid Projection	Universal Transverse Mercator, Northern Hemisphere					
UTM Zone	30 N					
Central Meridian	03° 00' 00" West					
Latitude of Origin	00° 00′ 00″ North					
False Easting	500000.0 m					
False Northing	0 m					
Scale factor on Central Meridian	0.9996					
Units	Metres					

5.3. Survey Equipment

Table 4 Equipment utilised onboard the Seren Las.


Equipment	Model				
Camera System	OEL's Rayfin PLE Camera System with freshwater housing				
Grab System	OEL's 0.1 m ² Day Grab				
dGPS	Hemisphere V104s GPS Compass				
Gyro Compass	Hemisphere V104s GPS Compass				
Navigation Software	EIVA NaviPac V4.5				
Subsea Positioning	Ultra-Short Baseline System (USBL) – AAE Nexus 2 Lite				


5.3.1. Subsea Positioning

A vessel-based positioning system was employed utilizing EIVA NaviPac V4.5 software to ensure the accurate positioning of the vessel and subsea positioning of the sampling equipment. A navigation screen, displaying EIVA Helmsman Display was provided at the helm position of the vessel for the Vessel Skipper as well as for the ecologist/surveyor in the wheelhouse. An Ultra-Short Baseline (USBL) system was required due to deep water depths meaning the camera system was offset from the vessel's stern (i.e., the deployment point). The position of the sampling equipment was determined using a subsea beacon attached to the camera and grab frames when deployed from the stern A frame of *Seren Las*.

5.3.2. Drop-Down Camera Systems

Seabed imagery (simultaneous video and stills) were acquired along the DDC transects and stations using OEL's Rayfin PLE Camera System to collect High Definition (HD) video and high-resolution (up to 21 megapixels (MP)) still images. OEL's Rayfin PLE Camera System (Plate 2) consisted of a SubC Imaging Rayfin PLE camera, seabed frame equipped with freshwater housing (Jones et al. 2021), two LED strip lights, two 5kW green dot lasers (set to 10cm distance for scale), a 300m umbilical and topside computer. The camera was powered with the use of an Uninterruptable Power Supply (UPS) to ensure no damage was caused should the vessel lose power or cause a power surge. The freshwater housing was height and angle adjustable providing a variety of options for view, lighting, and focal length to maximise data quality with respect to prevailing conditions (e.g., high turbidity).

All DDC stations and transects were sampled in consideration of the Joint Nature Conservation Committee (JNCC) epibiota remote monitoring operational guidelines (Hitchin et al. 2015). At each screening DDC location, a minimum of two minutes of video footage and five seabed still images (of between $0.5m^2$ to $1m^2$ of seabed coverage depending on visibility) were obtained. Along each DDC transect, the camera was slowly 'flown' just above the seabed to ensure representative imagery was collected along the full transect with still images taken every 5-10 m along with continuous video recording. Where visibility was restricted, the camera was lowered gently on to the seabed. All footage underwent a preliminary review onboard by the OEL's marine ecologists.

5.3.3. Benthic Grab Sampling

A 0.1m² Day grab was used to obtain macrobenthic and PSD at each of the proposed grab sampling locations.

To ensure consistency in sampling, all grab samples were screened by the lead marine ecologist and considered unacceptable if:

- The sample was less than 5L. i.e., the sample represents less than half the 10L capacity of the grab used.
- The jaws failed to close completely or were jammed open by an obstruction, allowing fines to pass through (washout or partial washout).
- The sample was taken at an unacceptable distance from the target location (beyond 20m).
- There was obvious contamination of the sample from survey equipment, paint chips etc.

Samples with a volume less than 5L in muds or 2.5L in hard-packed sands were rejected and sampling at the location reattempted up to a maximum of three times. Attempts were made to obtain as much sample as possible by adjusting the amount of weight on the grab sampler. Under no circumstances was pooling of samples undertaken.

Grab Sample Processing (macrobenthos and PSA samples)

Initial grab sample processing was undertaken onboard the *Seren Las* in line with the following methodology:

- Initial visual assessment of sample size and acceptability made.
- Photograph of the unprocessed sample in sample hopper with station details and scale bar taken.
- Sub-sample removed for PSD analysis and transferred to a labelled tray.
- Remaining sample emptied onto 1.0 mm sieve net laid over 4.0 mm sieve table and washed through using gentle rinsing with seawater hose.
- Photograph of the sieved sample on 1.0 mm sieve net taken.
- Remaining sample for faunal sorting and identification backwashed into a suitable sized sample container and diluted 10 % formalin solution added to fix the sample prior to laboratory analysis.
- Sample containers clearly labelled internally and externally with date, sample ID and project name.

Grab Sample Processing (contaminant samples)

A separate grab was taken at a subset of 20 sampling stations for contaminant analysis using the following methodology:

- Inspection cover lifted and general assessment of sample size and acceptability made ensuring sediment surface is undisturbed and no obvious sign of contamination. NB ensure no grease, oils or lubes enter the sample once the inspection cover is open.
- pH / Redox probe placed into sediment sample and allowed to settle for 2 minutes before taking readings in field logs.
- Sediment samples were sub-sampled and decanted into the recommended sample containers provided by Société de Contrôles Techniques (SOCOTEC), the contaminant laboratory specialists, to undertake the MMO suite analysis for disposal at sea along with additional analyses, as summarised below:
 - Additional Metals: Ag, Te, Ba, Be, Ti, U, Mn, Sb, Co, Mo, Sn, Se, Tl, V
 - Total Organic Matter by Loss on Ignition (LOI)
 - Moisture Content

6. Laboratory and Analytical Methods

On arrival to the laboratory, all samples were logged in and entered into the project database created in OEL's web-based data management application <u>ABACUS</u> in line with in-house Standard Operating Procedures (SOPs) and OEL's Quality Management System (QMS).

6.1. Particle Size Distribution (PSD) Analysis

PSD analysis of sediment samples was undertaken by in-house laboratory technicians at OEL's MMO Validated laboratory.

6.1.1. Sample Preparation

Frozen sediment samples were first transferred to a drying oven and thawed at 80°C for at least 6 hours prior to visual assessment of sediment type. Before any further processing (e.g., sieving or sub-sample removal), samples were mixed thoroughly with a spatula and all conspicuous fauna (>1 mm) which appeared to have been alive at the time of sampling removed from the sample. A representative sub-sample of the whole sample was then removed for laser diffraction analysis before the remaining sample wet screened over a 1mm sieve to sort coarse and fine fractions. Care was taken so as not to overload the sieve and allow continual flow of <1mm sediment through until the water run clear.

6.1.2. Dry Sieving

The >1 mm fraction was then returned to a drying oven and dried at 80°C for at least 24 hours prior to dry sieving. Once dry, the sediment sample was run through a series of Endecott BS 410 test sieves (nested at 0.5 ϕ intervals) using a Retsch AS200 sieve shaker to fractionate the samples into particle size classes. The dry sieve mesh apertures used are given in Table 5.

 Table 5. Sieve series employed for Particle Size Distribution (PSD) analysis by dry sieving (mesh size in mm).

Sieve aperture (mm)												
63	45	32	22.5	16	11.2	8	5.6	4	2.8	2	1.4	1

The sample was then transferred onto the coarsest sieve at the top of the sieve stack and shaken for a standardised period of 20 minutes. The sieve stack was checked to ensure the components of the sample had been fractioned as far down the sieve stack as their diameter would allow. A further 10 minutes of shaking was undertaken if there was evidence that particles had not been properly sorted.

6.1.3. Laser Diffraction

The fine fraction residue (<1 mm sediments) was transferred to a suitable container and allowed to settle for 24 hours before excess water syphoned from above the sediment surface until a paste texture was achieved. The fine fraction was then analysed by laser diffraction using a Beckman Coulter LS13 320. For silty sediments, ultrasound was used to agitate particles and prevent aggregation of fines.

6.1.4. Data Merging

The dry sieve and laser data were then merged for each sample with the results expressed as a percentage of the whole sample at 0.5 ϕ intervals from -5.5 (45 mm) to >14.5 (<0.04 μ m). Once data was merged, size classifications were presented in the MMO Template and PSD statistics and sediment classifications were generated from the percentages of the sediment determined for each sediment fraction using Gradistat v9.1 software.

Sediments were also described by their size class based on the Wentworth classification system (Wentworth 1922) (Table 6). Statistics such as mean and median grain size, sorting coefficient, skewness and bulk sediment classes (percentage silt, sand and gravel) were also derived in accordance with the Folk classification (Folk 1954).

Wentworth Scale	Phi Units (φ)	Sediment Types
>64 mm	<-6	Cobble and boulders
32 – 64 mm	-5 to -6	Pebble
16 – 32 mm	-4 to -5	Pebble
8 – 16 mm	-3 to -4	Pebble
4 - 8 mm	-3 to -2	Pebble
2 - 4 mm	-2 to -1	Granule
1 - 2 mm	-1 to 0	Very coarse sand
0.5 - 1 mm	0 – 1	Coarse sand
250 - 500 μm	1 – 2	Medium sand
125 - 250 μm	2 – 3	Fine sand
63 - 125 μm	3 – 4	Very fine sand
31.25 – 63 μm	4 – 5	Very coarse silt
15.63 – 31.25 μm	5 – 6	Coarse silt
7.813 – 15.63 μm	6 – 7	Medium silt
3.91 – 7.81 µm	7 – 8	Fine silt
1.95 – 3.91 µm	8 – 9	Very fine silt
<1.95 µm	<9	Clay

 Table 6. Classification used for defining sediment type based on the Wentworth Classification System (Wentworth 1922).

6.2. Sediment Chemical Analysis

All sediment chemistry analysis was undertaken by UKAS accredited and MMO Validated laboratory SOCOTEC UK Limited. A full description of the methods used to test for each chemical determined is provided as Appendix II.

6.2.1. Hydrocarbons

Indices and ratios were calculated to assess source origin of hydrocarbons in the sediment sampled across the Morecambe OWF site (Ines et al. 2013, Aly Salem et al. 2014, Al-hejuje et al. 2015). Generally, there are three sources of hydrocarbons depending on their origin: biogenic, petrogenic and pyrogenic. Hydrocarbons of biogenic origin are the produce of biological processes or early diagenesis in marine sediments (e.g., perylene) (Venkatesan 1988, Junttila et al. 2015). Hydrocarbons of petrogenic origin are the compounds present in oil and some oil products following low to moderate temperature diagenesis of organic matter in sediments resulting in fossil fuels. Hydrocarbons of pyrogenic origin are the product of incomplete combustion of organic material (Page et al. 1999, Junttila et al. 2015), such as forest fires and incomplete combustion of fossil fuels.

Based on polycyclic aromatic hydrocarbon (PAH) compounds the following ratios were calculated as follows:

The ratio between light (LMW) and heavy molecular weight (HMW) PAHs is typically used as a proxy to determine the origin source of PAH compounds in sediments, ratios above 1 indicate a petrogenic source while ratios below 1 indicate a pyrogenic source. LMW PAHs include compounds with 2-3 rings while HMW PAHs include compounds with more than 4 rings (Edokpayi et al. 2016).

Phenanthrene / Anthracene ratio: values lower than 10 indicate a pyrogenic source origin for the hydrocarbons; while values higher than ten account for hydrocarbons of petrogenic origin (Kafilzadeh et al. 2011).

Fluoranthene / Pyrene ratio: for values higher than one, the hydrocarbons are pyrogenic in origin, for values below one, the hydrocarbons are petrogenic in origin (Kafilzadeh et al. 2011).

6.2.2. Heavy and Trace Metals

A total of eight main heavy and trace metals were analysed from sediments taken at each of the 20 stations sampled. These were Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni), and Zinc (Zn). An additional 14 heavy and trace metals were analysed in support of the above measurements.

Where available, mean metal concentrations were compared to the OSPAR Background Assessment Concentration (BAC) (OSPAR et al. 2009), the USA Environmental Protection Agency (EPA) Effect Range Low (ERL) (NJDEP 2009), (DEFRA 2003) Action Level (AL) 1 and AL 2, and the Canadian sediment quality guideline (CSQG) Threshold Effect Level (TEL) and Probable Effect Level (PEL) (CCME 2001). To note that ERL, TEL and PEL are based on field research programmes based on North American data that have demonstrated associations between chemicals and biological effects by establishing cause and effect relationships in particular organisms (CCME 2001). This means they provide a measure of environmental toxicity compared to the other reference levels which instead provide information on the degree of contamination of the sediments. At levels above the TEL, adverse effects may occasionally occur, whilst at levels above the PEL, adverse effects may occur frequently; concentrations below the ERL rarely cause adverse effects in marine organisms. Additionally, the TEL has been adopted as the International Sediment Quality Guideline (ISQG) (CCME 2001), while ERL has been adopted by OSPAR to assess the ecological significance of contaminant concentrations in sediments, where concentrations below the ERL rarely cause adverse effects in marine organisms. For these reasons ERL, TEL and PEL are presented here as reference values despite being based on North American data.

BACs were developed to assess the status of contaminant concentrations in sediment within the OSPAR framework with concentrations significantly below the BAC considered to be near background levels for the North-East Atlantic. Cefas ALs are used as part of a 'weight of evidence' approach to assessing dredged material and its suitability for disposal to sea ((DEFRA 2003).

Contaminant levels in dredged material which fall below AL1 are of no concern and are unlikely to influence decision-making, while contaminant levels above AL2 are generally considered unsuitable for at-sea disposal.

6.3. Macrobenthic Analysis

All elutriation, extraction, identification and enumeration was undertaken at OEL's NMBAQC scheme participating laboratory in line with the NMBAQC Processing Requirement Protocol (PRP) (Worsfold & Hall 2010a). All processing information and macrobenthic records were recorded using OEL's cloud-based data management application '<u>ABACUS</u>' that employs MEDIN¹ validated controlled vocabularies ensuring all sample information, nomenclature, qualifiers and metadata are recorded in line with international data standards.

For each macrobenthic sample, the excess formalin was drained off into a labelled container over a 1 mm mesh sieve in a well-ventilated area. The samples were then re-sieved over a 1 mm mesh sieve to remove all remaining fine sediment and fixative. The low-density fauna was then separated by elutriation with fresh water, poured over a 1 mm mesh sieve, transferred into a Nalgene and preserved in 70 % Industrial Denatured Alcohol (IDA). The remaining sediment from each sample was subsequently separated into 1 mm, 2 mm and 4 mm fractions and sorted under a stereomicroscope to extract any remaining fauna (e.g., high-density bivalves not 'floated' off during elutriation). All macrobenthos present was identified to species level, where possible, and enumerated by trained benthic taxonomists using the most up to date taxonomic literature and checks against existing reference collections. Nomenclature utilised the live link within ABACUS to the WoRMS² REST webservice, to ensure the most up to date taxonomic classifications were recorded. Colonial fauna (e.g., hydroids and bryozoans) were recorded as present (P). For the purposes of subsequent data analysis, taxa recorded as P were given the numerical value of 1.

Following identification, all specimens from each sample were pooled into five major groups (Annelida, Crustacea, Mollusca, Echinodermata and Miscellaneous taxa) in order to measure blotted wet weight major group biomass to 0.0001g. As a standard, the conventional conversion factors as defined by (Eleftheriou & Basford 1989) were applied to biomass data to provide equivalent dry weight biomass (Ash Free Dry Weight, AFDW). The conversion factors applied are as follows:

- Annelida = 15.5 %
- Crustacea = 22.5 %
- Mollusca = 8.5 %
- Echinodermata = 8.0 %
- Miscellaneous = 15.5 %

¹ Marine Environmental Data and Information Network

² <u>http://www.marinespecies.org</u>

6.4.1. Data Truncation and Standardisation

The macrobenthic species list was checked using the R package 'worms' (Holstein 2018) to check against WoRMS taxon lists and standardise species nomenclature. Once the species nomenclature was standardised in accordance with WoRMS accepted species names, the species list was examined carefully by a senior taxonomist to truncate the data, combining species records where differences in taxonomic resolution were identified.

6.4.2. Pre-Analysis Data Treatment

All data were collated in excel spreadsheets and made suitable for statistical analysis. All data processing and statistical analysis was undertaken using R v 1.2 1335 (R Core Team 2020) and PRIMER v7 (Clarke & Gorley 2015) software packages.

In accordance with the OSPAR Commission guidelines (OSPAR 2004) records of colonial, meiofaunal, parasitic, egg and pelagic taxa (e.g. epitokes and larvae) were recorded, but were excluded when calculating diversity indices and conducting multivariate analysis of community structure. Newly settled juveniles of macrobenthic species may at times dominate the macrobenthos, however the OSPAR (2004) guidelines suggest they should be considered an ephemeral component due to heavy post-settlement mortality and not therefore representative of prevailing bottom conditions (OSPAR 2004). OSPAR (2004) further states that "Should juveniles appear among the ten most dominant organisms in the data set, then statistical analyses should be conducted both with and without these in order to evaluate their importance". As juveniles of Amphiuridae and Pectinariidae appeared in the top ten most dominant taxa across the windfarm site, a 2STAGE analysis was conducted to compare the two data sets (with and without juveniles) which revealed a high level of similarity (~98.7 %) between the two and therefore juveniles were retained in the dataset for all further analyses and discussion.

In accordance with NMBAQC PRP (Worsfold & Hall 2010b), Nematoda were recorded during the macrobenthic analysis and included in all datasets for all further analyses and discussion.

6.4.3. Univariate Statistics

The 'diverse' function in PRIMER was used to calculate species diversity indices for macrobenthic data. These univariate indices enable the reduction of large datasets into useful metrics which can be used to describe and compare community structures:

- Number of Species (S): the number of species present in a sample, with no indication of relative abundances.
- Number of individuals (N): total number of individuals counted.

6.4.4. Multivariate Statistics

Multivariate analysis was undertaken in consideration of best practice guidance (Noble-James et al. 2018) and NE's (2021) Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards - Phase I (Natural England 2021b). Prior to multivariate analyses data were displayed as a shade plot with linear grey-scale intensity proportional to macrobenthic abundance (Clarke et al. 2014) to determine the most efficient pre-treatment method. Macrobenthic abundance data from grab samples was square root transformed to prevent taxa with intermediate abundances from being discounted from the analysis.

The PRIMER v7 software package (Clarke & Gorley 2015) was utilised to undertake the multivariate statistical analysis on the biotic macrobenthic dataset. To fully investigate the multivariate patterns in the biotic data, macrobenthic assemblages were characterised based on their community composition, with hierarchical clustering used to identify groupings of sampling stations that could be grouped together as a habitat type or community. SIMPER analysis was then applied to identify which taxa contributed most to the similarity within that habitat type or community. A detailed description of analytical routines is provided in Appendix III.

6.5. Determining EUNIS Classifications

Macrobenthic assemblages were characterised based on their community composition, with hierarchical clustering used to identify groupings of sampling stations that could be grouped together as a habitat type or community. Setting these groupings as factors within PRIMER, SIMPER analysis was then applied to identify which taxa contributed the most to the similarity within that community. EUNIS classifications were then assigned based on the latest JNCC guidance (Parry 2019).

6.6. Seabed Imagery Analysis

Digital photographic stills and video footage were successfully obtained at all DDC stations and along all DDC transects and subsequently analysed to aid in the identification and delineation of EUNIS habitats and potential Annex I habitats and other features of interest within the windfarm site.

All seabed imagery analysis was undertaken using the Bio-Image Indexing and Graphical Labelling Environment (<u>BIIGLE</u>) annotation platform (Langenkämper et al. 2017) and in line with JNCC epibiota remote monitoring interpretation guidelines (Turner et al. 2016) with consideration of the latest <u>NMBAQC/JNCC Epibiota Quality Assurance Framework (QAF) guidance</u> and <u>identification protocols</u>.

Analysis of still images was undertaken in two stages. The first stage, "Tier 1", consisted of labels that referred to the whole image being assigned, providing appropriate metadata for the image. Depending on the reef type, this included:

- Extent: As it is not possible to fully determine the extent of reef habitats from a single image alone this label was used to identify areas that were highly unlikely to constitute reef habitats. An example being an image that shows a large boulder being preceded and succeeded by images of unconsolidated sandy sediments.
- Biota: Labels assigned to determine whether epifauna dominate the biological community observed.
- Elevation: Labels assigned depending on reef type. Laser points were used to assist in the assignment of categories.

The second stage, "Tier 2", was used to assign percentage cover of 'reef' types by drawing polygons to inform the habitat assessment process.

6.6.1. Annex I Habitat Assessment

A full reef habitat assessment was conducted on all images to determine whether habitats met the definitions of Annex I geogenic and biogenic *Sabellaria spinulosa* reef habitats as detailed in Table 7 and Table 8 and in consideration of the JNCC guidance for Annex I low resemblance stony reef (Golding et al. 2020). The annotation label tree used during analysis had major headings for each of reef type. Under each reef type labels were assigned for each of the categories required to determine whether reef habitat was present.

There are currently no guidelines for assessing the quality ('reefiness') of bedrock reef habitats, however extent and cover were used to determine areas of bedrock reef as suggested by (Golding et al. 2020). The annotation label tree in BIIGLE was assigned major headings for each reef type: stony reef, bedrock reef and biogenic reef. Under each reef type, labels were assigned for each of the categories required to determine whether reef habitat was present as per the tables below.

Characteristic	'Reefiness'					
Characteristic	Not a Reef	Low	Medium	High		
Composition (proportion of boulders/cobbles (>64 mm))	<10 %	10-40 % matrix supported	40-95 %	>95 % clast- supported		
Elevation	Flat seabed	<64 mm	64 mm - 5 m	>5 m		
Extent	<25 m ²	>25 m ²				
Biota	Dominated by infaunal species	>80 % of species present composed of epibiotal species				

Table 7	Characteristics	of stony	/ reef (Irving	2009).

Characteristic	'Reefiness'				
	Not a Reef	Low	Medium	High	
Elevation (cm)	< 2	2 - 5	5 – 10	> 10	
Extent (m ²)	< 25	25 – 10,000	10,000 - 1,000,000	> 1,000,000	
Patchiness (% Cover)	< 10	10 - 20	20 – 30	> 30	

Table 8 Characteristics of Sabellaria spinulosa reef (Gubbay 2007).

6.6.2. Seapen and Burrowing Megafauna Assessment

Areas deemed to meet the criteria of the FOCI/OSPAR Seapens and burrowing megafauna, as per Robson (Robson 2014), were further assessed to determine the density of burrows, burrowing megafauna and seapens (if present). Burrows, megafauna and seapens were annotated using point annotations, with burrows being split based on width. Field of view was used to determine density per m², which was calculated for each image using BIIGLEs in built field of view calculation function.

6.7. Habitat/Biotope Mapping

All mapping processes was conducted in ESRI ArcPro Version 2.9. All seabed imagery assigned a EUNIS habitat in BIIGLE based on the latest JNCC guidance (Parry 2019) was utilised alongside the acoustic information and ground-truthed data from the grab samples to manually delineate the boundaries (polygons) of the various habitats and biotopes encountered across the survey area. Confidence scores were assigned to each polygon to give an indication of their accuracy. A value of 1 (low confidence) or 2 (high confidence) was assigned depending on the following:

- Whether ground-truth data was available within the polygon
- Whether multiple data sources confirmed/suggested the presence of the same habitat/biotope within a polygon
- Whether the boundaries of the habitat/biotope were clearly defined either by seabed imagery, ground-truth or acoustic data

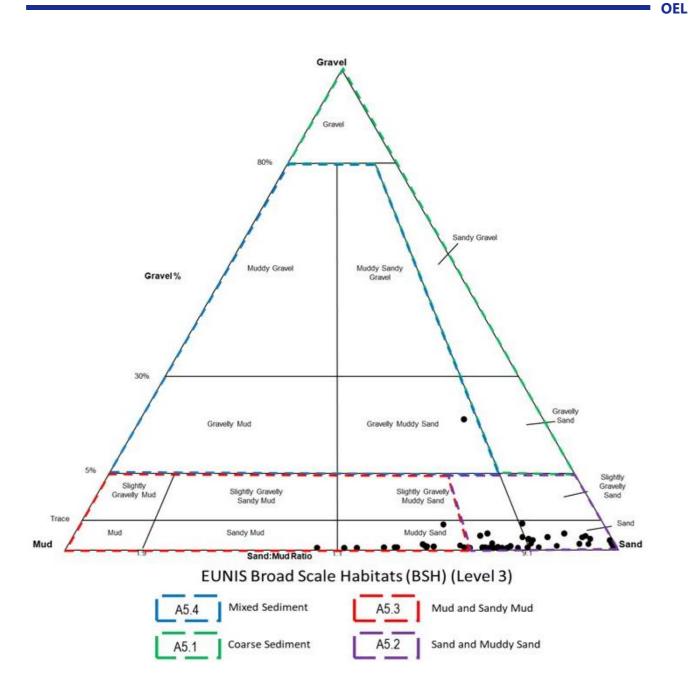
Highest scores were given to polygons where all data sources identified the same habitat/biotope, with distinct boundaries. Lower scores were assigned to polygons where ground-truth data was limited, and boundaries not obvious. In these cases, polygons were drawn based upon expert judgement, given the information available.

7. Results

A total of 50 successful grab samples were collected during the survey. ST33, a proposed DDC and grab location was located within 250m of the LANIS I subsea cable for which permission to sample was not received by the asset owner in time for the survey. Therefore, only seabed imagery was obtained at ST033 and a pre-determined backup grab location (ST51) was sampled for both DDC and grab. Full DDC and grab field logs are provided in Appendices IV, V and VI. Grab images are provided in Appendix VII.

7.1. Particle Size Distribution Data

7.1.1. Sediment Type


Full raw PSD data for each sampling station is provided in Appendix VIII. Sediment types at each sampling station as classified by the (Folk 1954) classification are summarised in Appendix IX and illustrated in Figure 6. Some variation in sediment type was observed between sampling stations, with stations located towards the west and southwest of the array having slightly coarser sediments. Specifically, 27 sediment samples consisted of Muddy Sand (mS), seven of Sand (S) and seven of Slightly Gravelly Sand ((g)S), six of Slightly Gravelly Muddy Sand ((g)mS), and one each of Gravelly Muddy Sand (gmS) and Sandy Mud (sM). Figure 7 maps the distribution of these sediment types across the Morecambe OWF site.

Most of the sediments recorded were classified as very poorly to poorly sorted (78 % of stations) due to the mixed composition of different size fractions of all three principal sediment types (gravel, sand, and mud). However, 11 of the samples made of Sand and Slightly Gravelly Sand were classified as moderately to moderately well sorted.

7.1.2. Sediment Composition

Mean sediment grain size (μ m) across the windfarm site ranged between 35.5 μ m at station ST45 and 536.1 μ m at station ST01 (Figure 9). A clear spatial pattern was evident in the distribution of mean grain size across the windfarm site with finer sediment characterising the eastern portion of the windfarm site and coarser sediment characterising the western part of the windfarm site.

Percentage contribution of gravel (> 2 mm), sand (> 63 μ m < 2 mm), and mud (< 63 μ m) are presented by station in Figure 9. Sand dominated across all stations but station ST45 where mud dominated. Other stations with notable mud contributions were stations ST25 and ST38, while gravel content was relatively high at station ST01. The mean (± SE) proportion of sand across all survey stations was 81.01 ± 2.03 %, mean (± SE) gravel content was 0.51 ± 0.41 % and mean (± SE) mud content was 18.46 ± 2.05 %.

Figure 6 (Folk 1954) triangle classifications of sediment gravel percentage and sand to mud ratio of samples collected across the Morecambe OWF site.

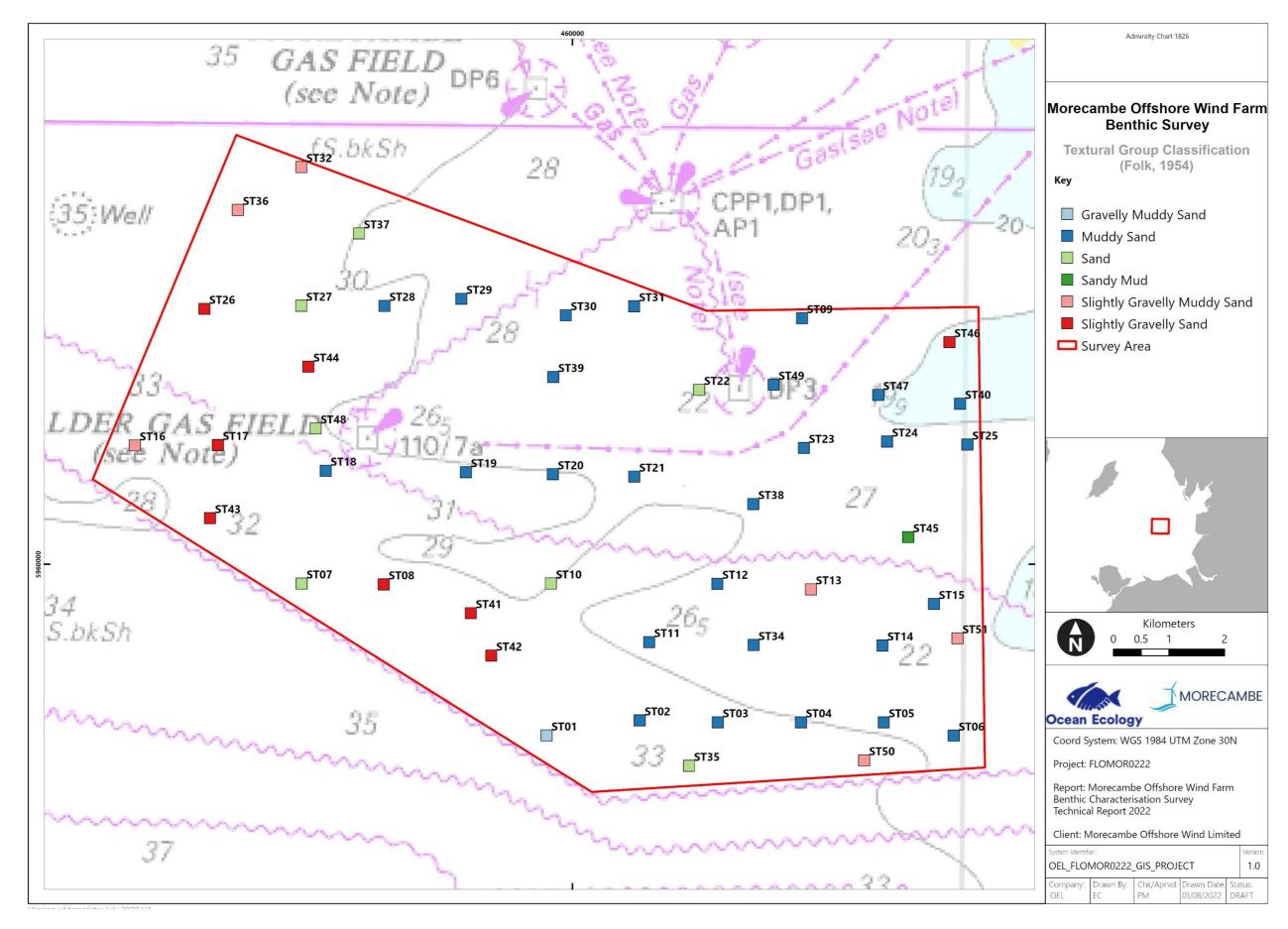


Figure 7 (Folk 1954) sediment types as determined from PSD analysis of samples.

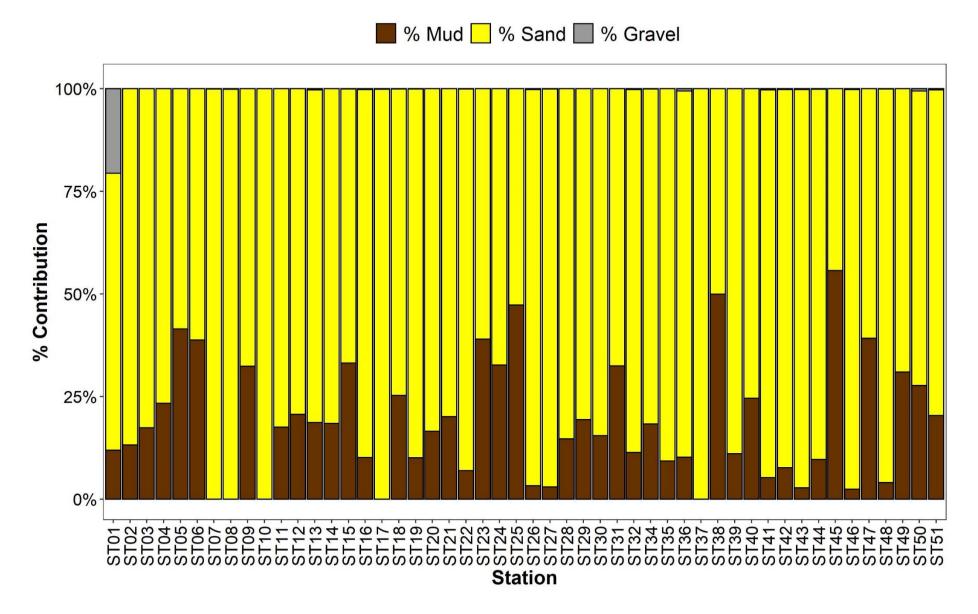


Figure 8 Principal sediment components (Gravel, Sand, Mud) as determined from PSD analysis of stations sampled across the Morecambe OWF site.

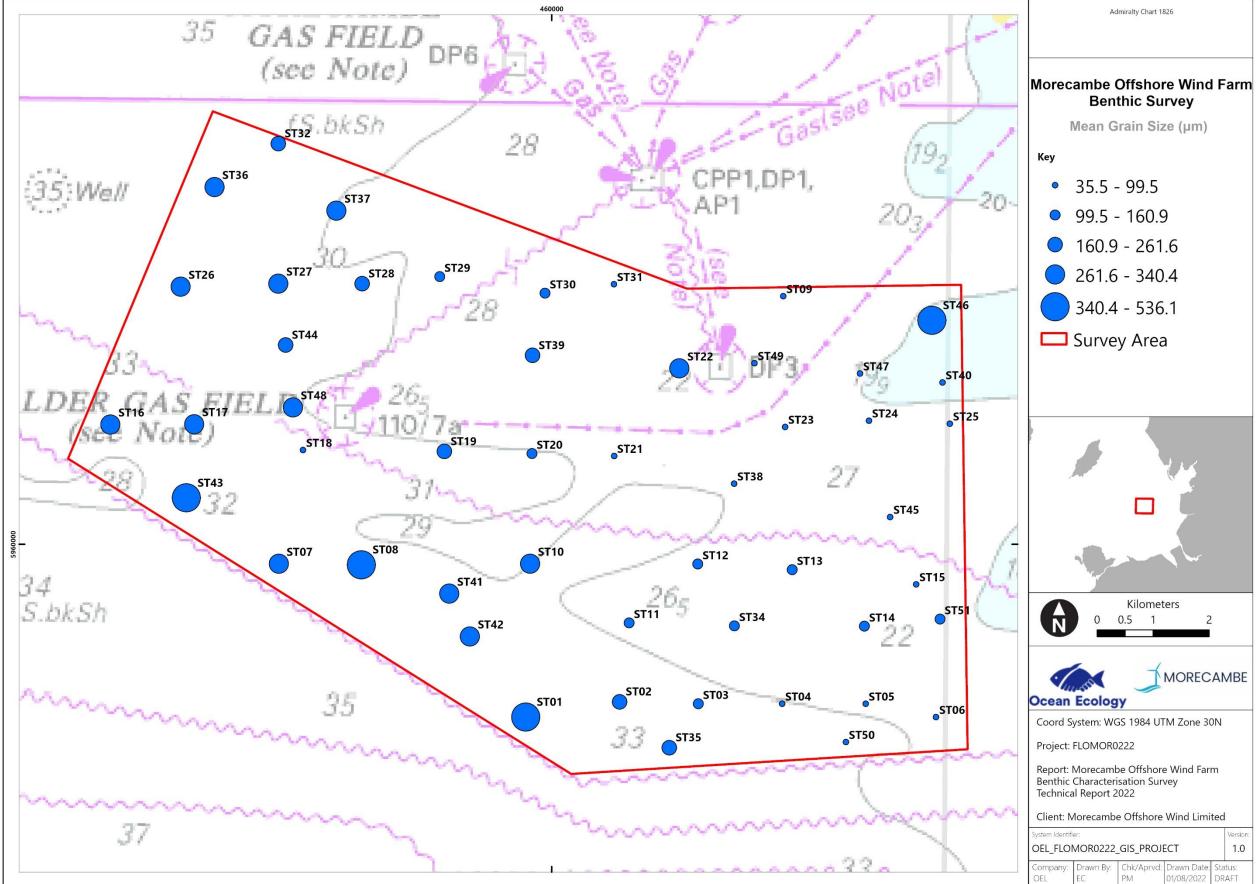


Figure 9 Comparison of mean sediment grain size (µm) of sediment samples.

7.2. Sediment Chemistry

Sediment samples for chemical analysis were collected from 20 stations sampled across the windfarm site. Grab samples taken for chemical analyses were analysed for Total Organic Carbon (TOC) and Total Organic Matter (TOM) (Section 7.2.1), heavy and trace metals (Section 7.2.2), Polycyclic Aromatic Hydrocarbon (PAH) and Total Hydrocarbon Content (THC) (Section 7.2.3), Organotins (Section 7.2.4) and Polychlorinated Biphenyls (PCBs) (Section 7.2.5). Raw sediment chemistry data are provided in Appendix X.

7.2.1. Total Organic Carbon (TOC) and Total Organic Matter (TOM)

TOC concentrations ranged from 0.07 % at ST43 to 0.46 % at ST38 with an average value (\pm SE) of 0.20 \pm 0.03 % across the windfarm site (Figure 10). In general, relatively higher TOC values were recorded at stations located in the eastern reaches of the windfarm site, compared to the stations located to the west and more offshore.

TOM content in sediment varied between 0.7 % at stations ST26 and ST49 and 2.53 % at ST38, with an average value (\pm SD) of 1.36 \pm 0.12 % across the windfarm site (Figure 11). A pattern like that observed for TOC was also seen for TOM with the highest TOM content at stations located in the eastern reaches of windfarm site.

No trend was observed between mud content in the sediment and percentage contribution of TOC or TOM.

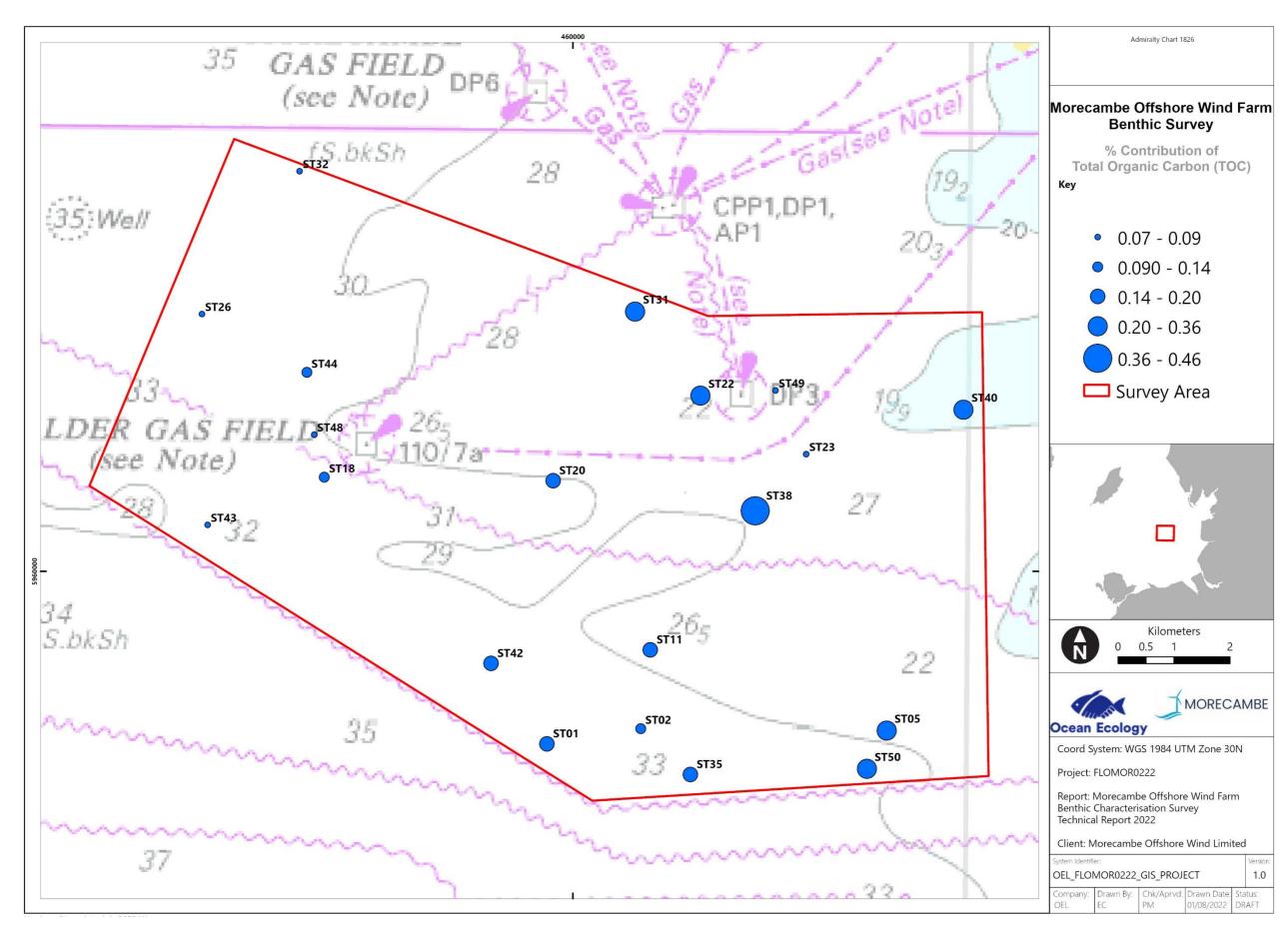


Figure 10 Percentage contribution of TOC across the Morecambe OWF site.

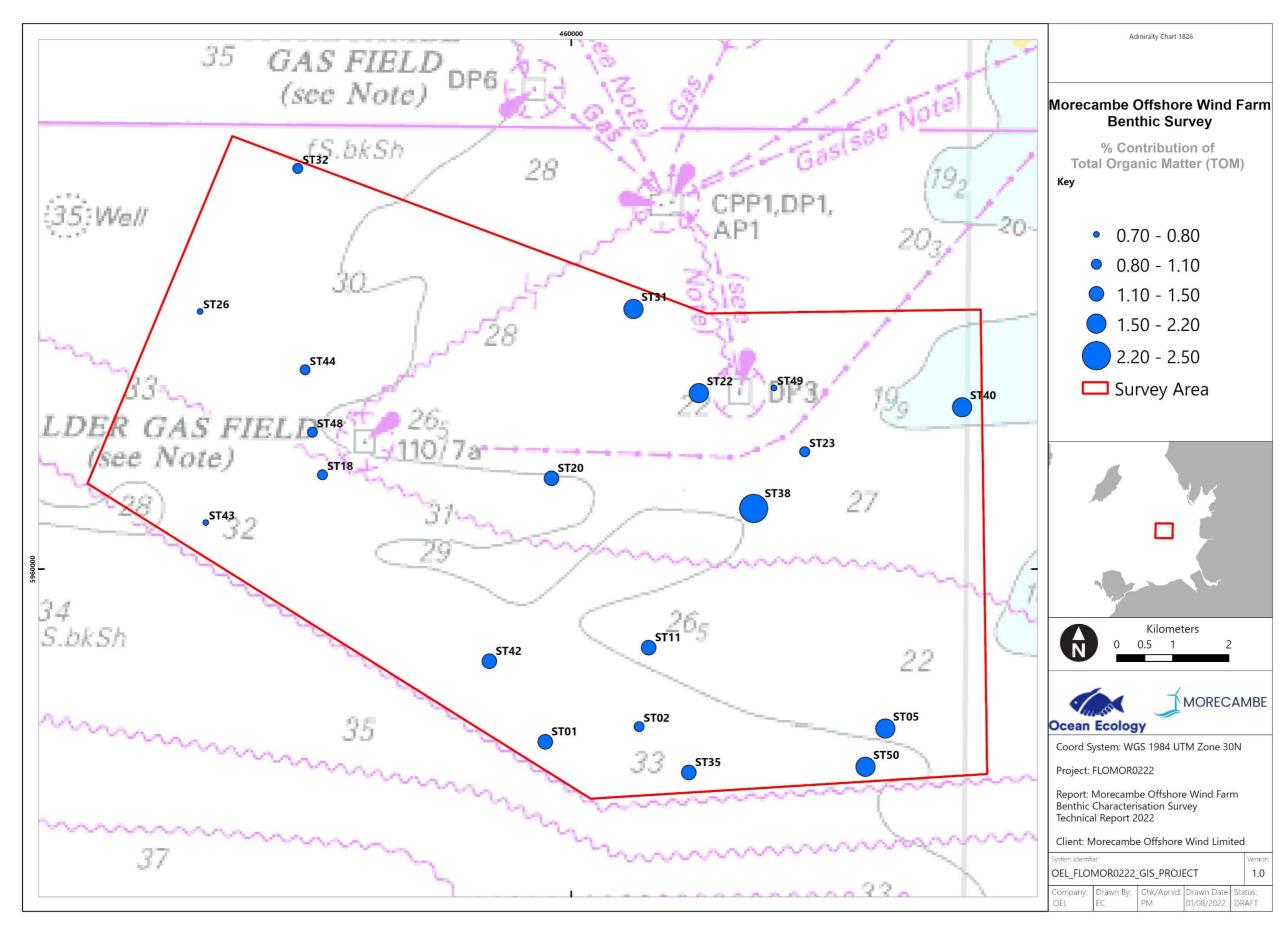


Figure 11 Percentage contribution of TOM across the Morecambe OWF site

7.2.2. Heavy and Trace Metals

A total of eight main heavy and trace metals were analysed from sediments taken at each of the 20 sampling stations. These were: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni), and Zinc (Zn). In addition, 14 secondary heavy and trace metals were analysed to provide a more in-depth picture of potential sediment contamination. These were: Antimony (Sb), Cobalt (Co), Manganese (Mn), Molybdenum (Mo), Selenium (Se), Thallium (TI), Tin (Sn), Uranium (U), Vanadium (V), Barium (Ba), Beryllium (Be), Titanium (Ti), Silver (Ag) and Tellurium (Te). Raw data for these secondary metals are provided in Appendix X.

Raw data for the eight main heavy and trace metals (dry-weight concentration, mg kg⁻¹) are shown in Table 9 together with available reference levels (see Section 6.2.2 for details on national and international reference levels). None of the main heavy and trace metals exceeded reference levels with the exception of As which was above the TEL (7.24 mg kg⁻¹) at three stations: ST01, ST26 and ST43. However, As concentrations were well below Cefas AL 1, the national reference level. Of notice, Cd was below detection limit (0.04 mg kg⁻¹) at 12 of the 20 stations sampled.

The most abundant metal was Zn which ranged from 21 mg kg⁻¹ at ST48 to 52.2 mg kg⁻¹ at ST38, however, it was always recorded well below any of the reference levels (Table 9). Pb was also recorded in relatively high concentrations, ranging between 6.4 mg kg⁻¹ at ST43 and 18.2 mg kg⁻¹ at ST38, again well below any of the reference levels. The third most abundant metal was Cr which varied from 6.2 mg kg⁻¹ at ST43 and 16.8 mg kg⁻¹ at ST38, once again never exceeding reference levels. The only metal exceeding reference levels was As, which was generally recorded in low concentrations, with an average concentration across the windfarm site of 6.14 mg kg⁻¹, but exceeded the TEL at three stations. Figure 12 illustrates the spatial distribution of these four metals across the windfarm site. Typically, Zn, Pb and Cr had higher concentrations at stations located closer to land than in stations further offshore, displaying an east-west gradient with higher concentrations to the east. Conversely, As did not show a concentration gradient as most stations had comparable and relatively low As concentrations with stations ST01 and ST42 located to the south west of the windfarm site and station ST26 located in the north west of the windfarm site reporting As concentrations exceeding the TEL (Figure 12).

No trend was observed between the concentration of heavy and trace metals and the amount of mud in the sediments.

n Heavy and trace metals (mg kg ⁻) in sediments. Shading indicates values above AL1.								
ŀ	Arsenic (As)	Cadmium (Cd)	Chromiu m (Cr)	Copper (Cu)	Mercury (Hg)	Nickel (Ni)	Lead (Pb)	Zinc (Zn)
	8.7	< 0.04	12.2	6.5	0.06	10.4	12.2	32.3
	5.0	< 0.04	8.4	5.2	0.05	6.5	8.8	28.6
	5.9	0.08	14.7	8.7	0.11	11.2	15.4	47.8
	4.6	<0.04	8.7	6.0	0.06	6.3	9.3	28.8
	5.7	<0.04	8.1	5.7	0.05	6.0	8.0	24.3
	5.0	0.06	9.2	6.8	0.06	7.3	10.0	29.8
	5.8	0.08	13.5	9.0	0.15	10.8	15.4	47.1
	4.9	0.05	7.8	11.4	0.06	5.8	7.9	22.4
	8.3	0.05	6.6	4.7	0.04	5.3	8.6	27.2
	6.7	<0.04	14.7	7.0	0.12	10.8	16.5	47.4
	7.1	<0.04	7.1	3.9	0.03	5.1	8.1	26.0
	5.8	< 0.04	9.8	6.3	0.05	7.2	11.5	32.8
	6.0	0.07	16.8	10.2	0.12	12.7	18.2	52.2
	6.4	<0.04	15.9	9.5	0.12	11.5	16.1	46.5
	9.2	<0.04	6.2	3.7	0.01	5.3	6.4	21.3
	6.5	<0.04	6.4	3.9	0.03	5.0	8.5	25.0
	6.0	<0.04	6.8	4.0	0.05	4.8	7.6	21.0
	4.6	0.05	7.5	5.1	0.05	5.4	8.3	23.8
	6.1	0.07	14.8	7.9	0.10	10.3	15.7	44.1
	4.6	<0.04	7.2	5.5	0.02	5.6	7.3	22.1
	4.6	0.05	6.2	3.7	0.01	4.8	6.4	21
	9.2	0.08	16.8	11.4	0.15	12.7	18.2	52.2
	6.14	0.06	10.12	6.55	0.07	7.66	10.99	32.52
	0.30	0.00	0.81	0.50	0.01	0.60	0.85	2.39
	20	0.4	40	40	0.3	20	50	130
	100	5	400	400	3	200	500	800

Table 9 Main Heavy and trace metals (mg kg⁻¹) in sediments. Shading indicates values above AL1.

Analyte

ST01 ST02 ST05 ST11 ST18 ST20 ST22 ST23 ST26 ST31 ST32 ST35 ST38 ST40 ST43 ST44 ST48 ST49 ST50 ST42 Min Max Mean Standard Error CEFAS AL1 CEFAS

AL2 OSPAR

> BAC ERL

TEL

PEL

*The ERLs for As and Ni are below the BACs therefore As and Ni concentrations are usually assessed only against the BAC.

27

34

18.7

108

0.07

0.15

0.1

0.7

81

81

52.3

160

0.31

1.2

0.7

4.2

25

8.2*

7.24

41.6

38

47

30.2

112

36

21*

-

_

122

150

124

271

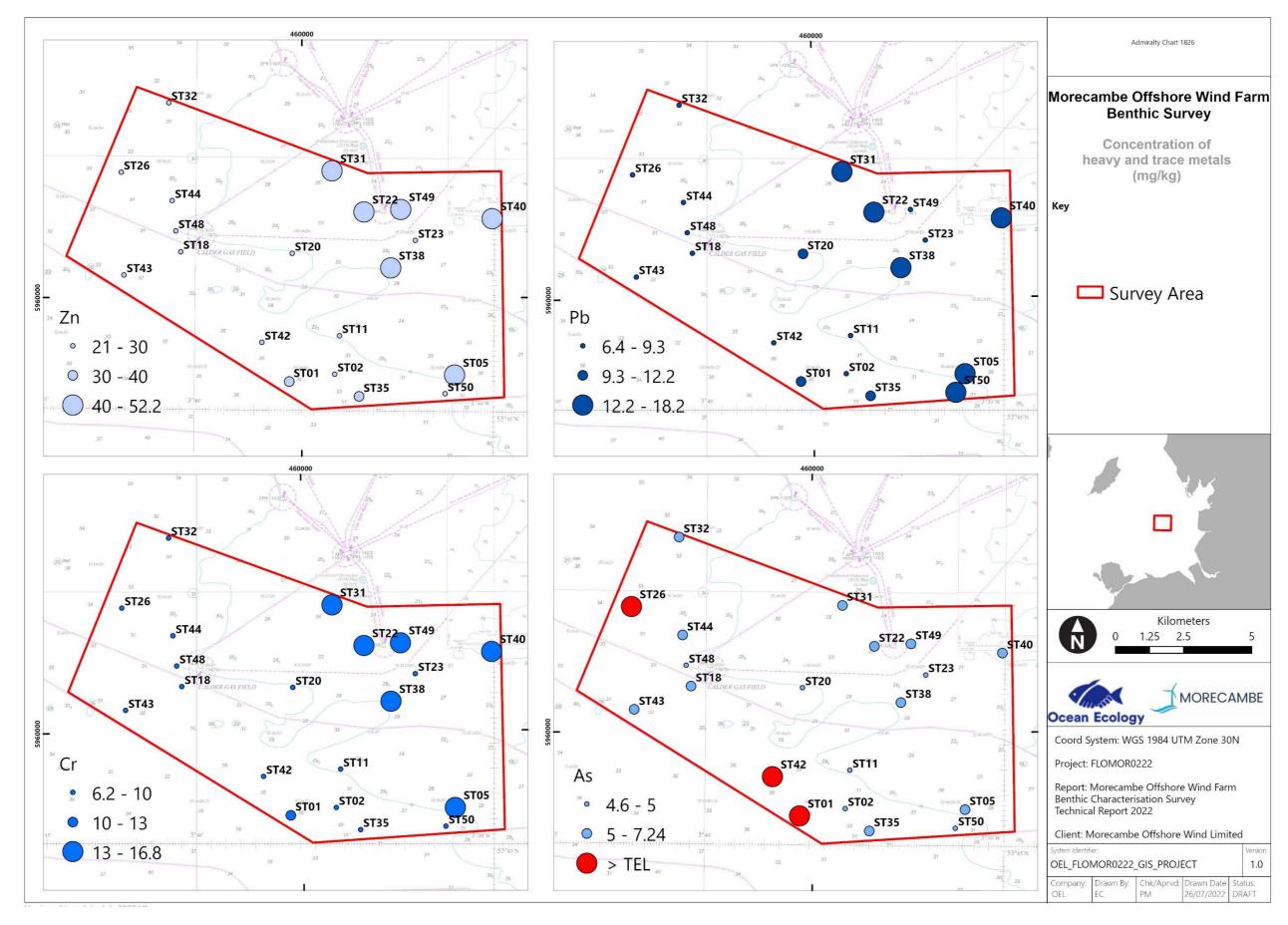


Figure 12 Concentration of the key heavy and trace metals sampled across the Morecambe OWF site. Note different scales

7.2.3. Polycyclic Aromatic Hydrocarbons (PAHs) and Total Hydrocarbons (THC)

The full range of PAHs as specified in the Department of Trade and Industry (DTI) regulations (DTI 1993) as well as by the EPA was tested for all 20 contaminant sub-samples collected.

The results of the PAHs analysis undertaken are reported in Appendix X. PAH concentrations were compared to Cefas AL1 (no Cefas AL2 available for PAHs), OSPAR BAC levels and ERLs, and TEL and PEL where possible (Table 10). The only reference level to be exceeded was the BAC, with Pyrene and Naphthalene being above reference levels at six of the 20 stations sampled. However, when averaged across the windfarm site, none of the PAH concentrations exceeded any of the reference levels.

The most abundant PAHs were: Pyrene with a mean concentration across the windfarm site of 14.27 μ g kg⁻¹ and a maximum concentration of 40.00 μ g kg⁻¹ at ST38, Benzo[b]fluoranthene with a mean concentration across the windfarm site of 14.05 μ g kg⁻¹ and a maximum concentration of 40.00 μ g kg⁻¹ at ST38 and Fluoranthene with a mean concentration across the windfarm site of 13.94 μ g kg⁻¹ at ST38 and Fluoranthene with a mean concentration across the windfarm site of 13.94 μ g kg⁻¹ and a maximum concentration of 40.10 μ g kg⁻¹ at ST38. Reference levels were available only for Pyrene and Fluoranthene with the former exceeding the BAC at six stations and the latter exceeding the BAC only at one station ST38 (Table 10).

The PAHs recorded in elevated concentrations at more stations were Naphthalene and Pyrene, followed by Anthracene and Benzo[a]anthracene (Table 10 and Figure 13). Naphthalene ranged from 1.06 μ g kg⁻¹ at ST26 to a maximum of 16.60 μ g kg⁻¹ at ST40 with six stations exceeding the BAC (Table 10 and Figure 13). Pyrene ranged from 1.23 μ g kg⁻¹ at ST43 to a maximum of 40.00 μ g kg⁻¹ at ST38 with six stations exceeding the BAC (Table 10 and Figure 13). Anthracene ranged from below detection limit (1 μ g kg⁻¹) to a maximum of 6.64 μ g kg⁻¹ at ST38 with five stations exceeding the BAC (Table 10 and Figure 13). Benzo[a]anthracene ranged from below detection limit (1 μ g kg⁻¹) to a maximum of 6.64 μ g kg⁻¹ at ST38 with five stations exceeding the BAC (Table 10 and Figure 13). Benzo[a]anthracene ranged from below detection limit (1 μ g kg⁻¹) to a maximum of 5.64 μ g kg⁻¹ at ST38 with five stations exceeding the BAC (Table 10 and Figure 13). Benzo[a]anthracene ranged from below detection limit (1 μ g kg⁻¹) to a maximum of 5.64 μ g kg⁻¹ at ST38 with five stations exceeding the BAC (Table 10 and Figure 13). In general PAHs showed higher concentrations at the nearshore stations compared to stations located further offshore, similar to what observed for trace metals.

To determine the origin source of PAH compounds in sediments, the ratio between Low Molecular Weight (LMW) and High Molecular Weight (HMW) PAHs was calculated. Based on this ratio all stations were characterised by PAHs of pyrogenic origin (LMW/HMW < 1). Similarly, the ratios of Phenanthrene / Anthracene (Ph/Ant) indicated a pyrogenic origin of PAHs as this ratio was below 10 at all stations. However, it should be noted that Anthracene concentrations were below detection limit at six stations and therefore it was not possible to calculate Ph/Ant at these locations. In contrast, the Fluoranthene / Pyrene ratio (Fl/Py) was lower than one at most stations (16 out of 20) indicating a petrogenic origin source of PAHs across the windfarm site (Figure 14). Given the contrasting results, average values across the windfarm site (\pm SE) were calculated to assess the robustness of the measurements and it followed that mean (\pm SE) LMW/HMW was 0.22 \pm 0.023, mean (\pm SE) Ph/Ant was 5.05 \pm 0.165 and mean (\pm SE) Fl/Py was 0.96 \pm 0.010 suggesting a mix source of PAHs, most likely of pyrogenic origin as two of the three indices indicated that.

Table 10 Number of stations across the Morecambe OWF site exhibiting elevated PAHs levels in comparison with OSPAR and Canadian Sediment Quality Guidelines (CSQG). No PAHs exceeded Cefas AL1 or CSQG levels.

	Cefas	OSPAR		CSQG	
Analyte	AL1	ВАС	ERL	TEL	PEL
Acenaphthene	0	-	-	0	0
Acenaphthylene	0	-	-	0	0
Anthracene	0	5	0	0	0
Benzo[a]anthracene	0	5	0	0	0
Benzo[a]pyrene	0	1	0	0	0
Benzo[b]fluoranthene	0	-	-	-	-
Benzo[ghi]perylene	0	0	0	-	-
Benzo[e]pyrene	0	-	-	-	-
Benzo[k]fluoranthene	0	-	-	-	-
Chrysene	0	3	0	0	0
Dibenzo[ah]anthracene	0	-	-	0	0
Fluoranthene	0	1	0	0	0
Fluorene	0	-	-	0	0
Indeno[1,2,3-cd]pyrene	0	0	0	-	-
Naphthalene	0	6	0	0	0
Perylene	0	-	-	-	-
Phenanthrene	0	1	0	0	0
Pyrene	0	6	0	0	0

THC in sediment samples ranged from 1.00 mg kg⁻¹ at ST43 to 33.70 mg kg⁻¹ at ST22, with an average value (\pm SE) for the whole of the windfarm site of 9.84 \pm 2.17 mg kg⁻¹ (Figure 14). As seen for trace metals and PAHs, also THC was relatively higher at easternmost stations compared to stations located further offshore.

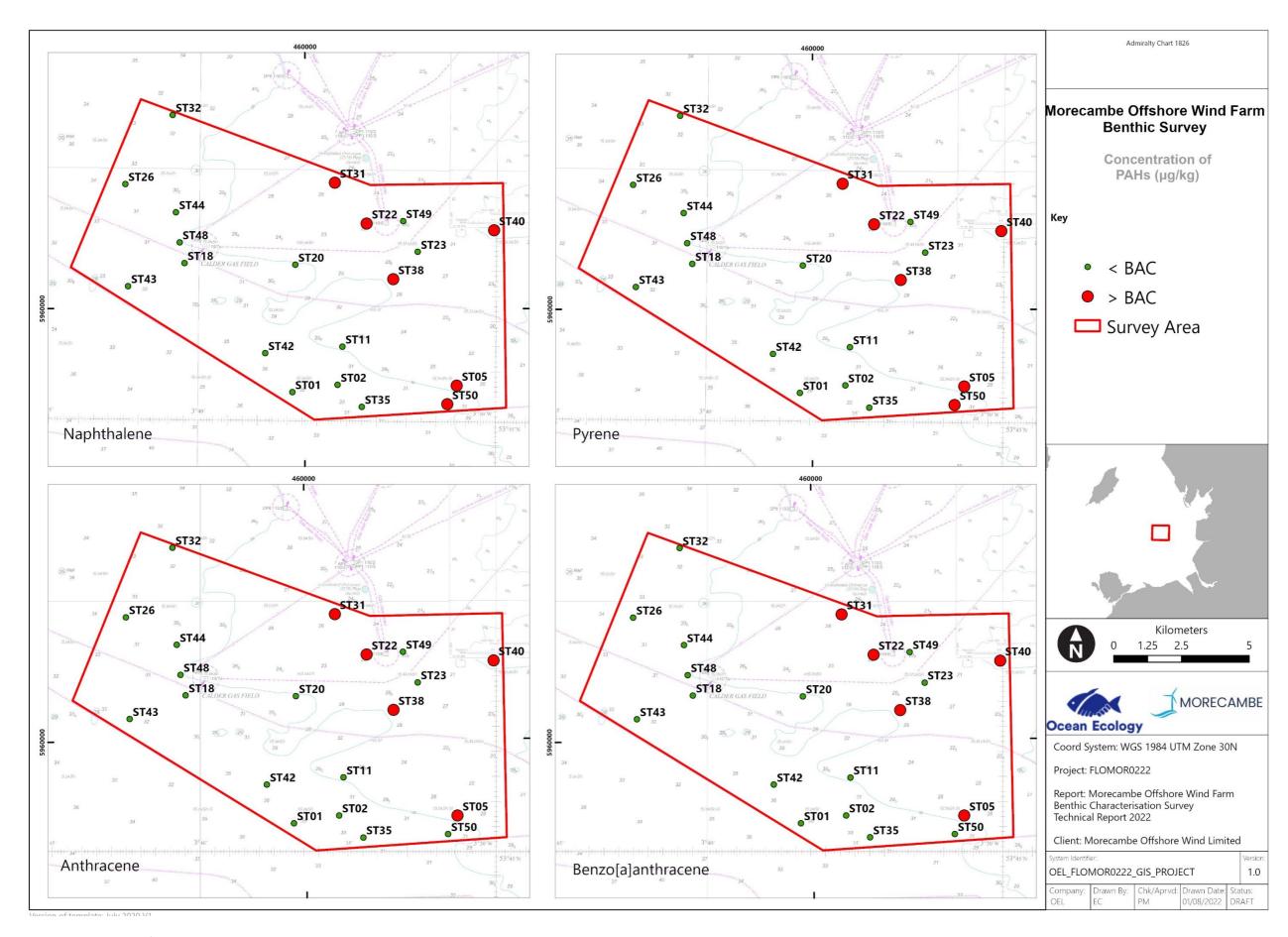


Figure 13 Concentration (µg kg⁻¹) of key PAHs against BAC across the Morecambe OWF site.

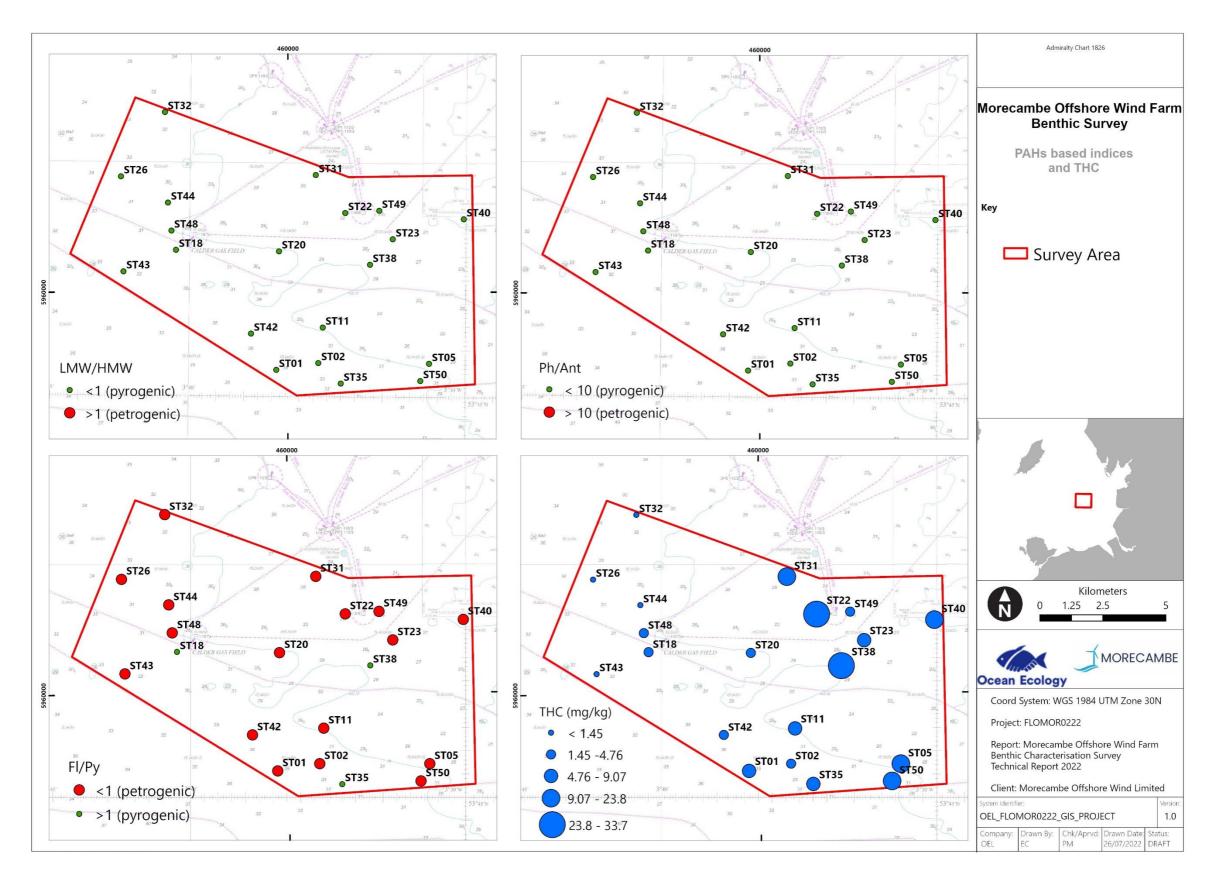


Figure 14 PAHs based indices and THC across the Morecambe OWF site.

7.2.4. Organotins

The concentrations of two organotins (Dibutyltin (DBT) and Tributyltin (TBT)) were analysed from the sediment taken at each of the 20 stations and reported in Appendix X.

All stations had organotin concentrations below the detection limit of 0.005 mg kg⁻¹. To provide some context, Cefas AL1 for organotins is 0.1 mg kg⁻¹ and AL2 is 1 mg kg⁻¹.

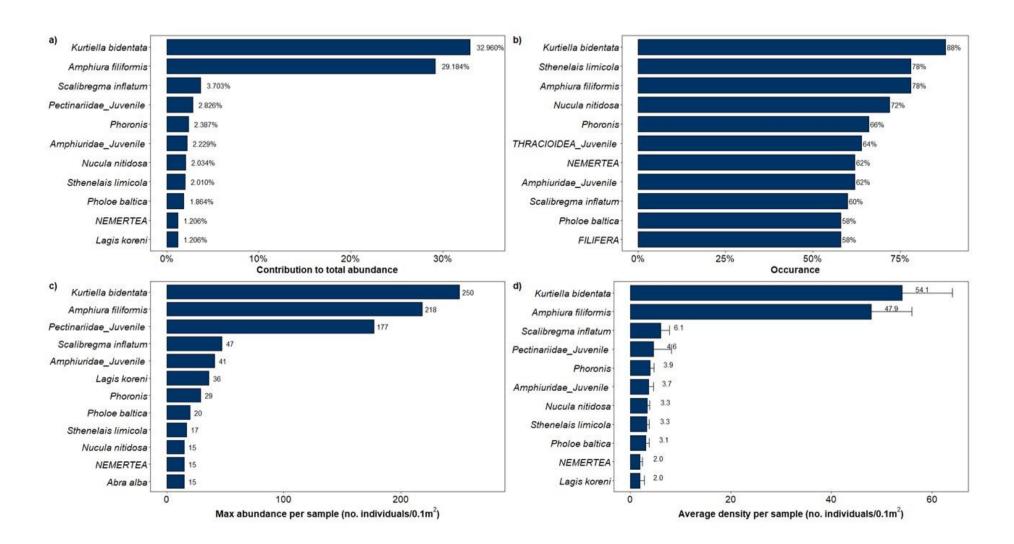
7.2.5. Polychlorinated Biphenyls (PCBs)

All 25 PCBs congeners were analysed from the sediments taken at each of the 20 stations and reported in Appendix X.

No Cefas Action Levels exist for each individual PCBs, however most PCBs had concentrations below the detection limit of 0.00008 mg kg⁻¹. Cefas Action Levels do exist for the sum of all 25 PCBs congeners (Σ 25PCBs). At all stations Σ 25PCBs was below Cefas AL1 (0.02 mg kg⁻¹), ranging from below detection limit to 0.0009 mg kg⁻¹.

7.3. Macrobenthos

7.3.1. Macrobenthic Composition


The macrobenthic assemblage identified across the Morecambe OWF site from the 50 macrobenthic samples collected was made up of a total of 8,127 individuals and 154 different taxa. The mean (\pm SE) number of taxa was 24 \pm 1 per station. Mean (\pm SE) abundance per station was 162 \pm 19 with a mean (\pm SE) biomass per station of 0.9504 \pm 0.1573 gAFDW.

The full abundance matrix is provided in Appendix XI. The biomass (gAFDW) of each major taxonomic group (Annelida, Crustacea, Mollusca, Echinodermata and Miscellaneous) in each sample collected is presented in Appendix XII.

As shown in Figure 15, the two-toothed Montagu shell (*Kurtiella bidentata*) was the most abundant taxon sampled accounting for 33 % of all individuals recorded. It was also the most frequently occurring as it was recorded in 88 % of samples and it accounted for the maximum abundance in a sample and greatest average density per sample (Figure 15). Other key taxa included the brittle star *Amphiura filiformis*, the polychaetes *Sthenelais limicola* and *Scalibregma inflatum* (Figure 15).

Figure 16 illustrates the relative contributions to total abundance, diversity, and biomass of the major taxonomic groups in the macrobenthic community sampled across the windfarm site. Mollusca taxa contributed most to abundance as they accounted for approximately 40 % of all individuals recorded, followed by Echinodermata taxa accounting for 33% (Figure 16). Annelida taxa contributed the most to the overall diversity of the macrobenthic assemblages at 38 %, while Echinodermata taxa dominated the biomass and accounted for 67 % of the total biomass (Figure 16).

Compared to abundance and diversity, biomass showed a much higher variability across the Morecambe OWF site (Figure 17) with the highest biomass recorded at station ST24 due to the presence of large molluscs and crustaceans, followed by station ST38 dominated by large echinoderms.

Figure 15 Percentage contributions of the top 10 macrobenthic taxa to total abundance (a) and occurrence (b) from samples collected across the Morecambe OWF site. Also shown are the maximum densities of the top 10 taxa per sample (c) and average densities of the top 10 taxa per sample (d).

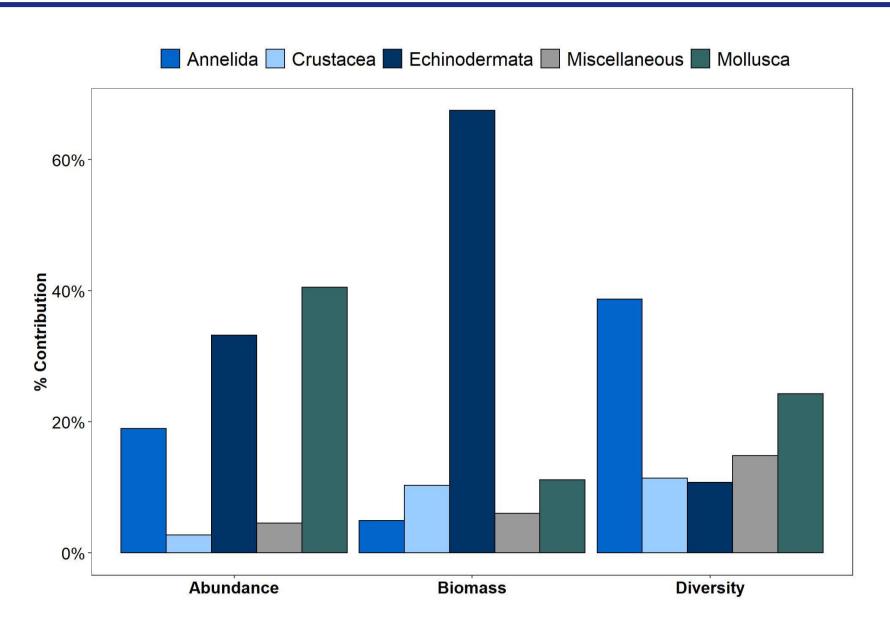



Figure 16 Relative contribution of the major taxonomic groups to the total abundance, diversity and biomass of the macrobenthos sampled across the Morecambe OWF site.

7.3.2. Notable Taxa

No notable taxa (e.g., non-native or commercially important species) were recorded across the Morecambe OWF site .

7.4. Macrobenthic Faunal Groupings

Multivariate analysis was undertaken on the square-root transformed macrobenthic abundance data to identify spatial distribution patterns in infaunal assemblages across the windfarm site and identify characterising taxa present.

Cluster analysis of the macrobenthic data was performed on a Bray-Curtis similarity matrix to analyse the spatial similarities in macrobenthic communities recorded across all sampled stations. The dendrogram resulting from the cluster analysis and associated Type 1 SIMPROF (similarity profile routine) permutation test of all nodes within the dendrogram identified 10 statistically significantly similar groups (p > 0.05). To enable a broad interpretation of the community present across the windfarm site, a similarity slice at 31 % was used to amalgamate the 10 SIMPROF groups into four broader Macrobenthic Groups, with one station not belonging to any group (outlier station ST46). The dendrogram resulting from the cluster analysis and associated Type 1 SIMPROF permutation test is provided in Appendix XIII.

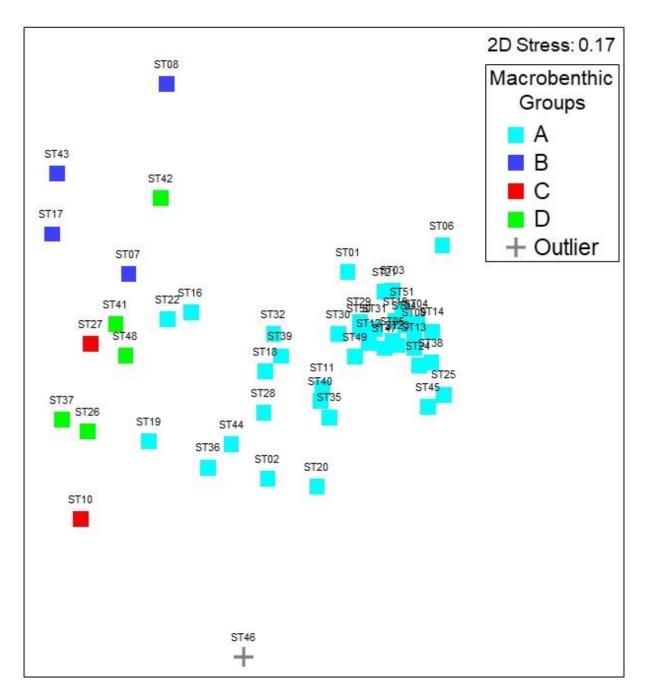
To visualise the relationships between the sampled macrobenthic assemblages, a non-metric multi-dimensional scaling (nMDS) plot was generated on macrobenthic abundance data (Figure 18). The nMDS represents the relationships between the communities sampled, based on the distance between sample (station) points. The stress value of the nMDS ordination plot (0.17) indicates that the two-dimensional plot provides an adequate representation of the similarity between stations. The degree of clustering of intra-group sample points demonstrates the level of within group similarity (e.g., points within Macrobenthic Group A show distinct clustering), whilst the degree of overlap of inter-group sample points is indicative of the level of similarity between different Macrobenthic Groups (e.g., Macrobenthic Groups B, C and D).

The spatial distribution of the four broader Macrobenthic Groups and outlier is mapped in Figure 19. SIMPER (similarity percentage analysis) was used to identify the key taxa contributing to the within group similarity (see Appendix XIV for SIMPER results).

Macrobenthic Group A – was the largest group observed including 38 of the 50 stations sampled (average similarity 41.79). Characterising taxa of this group were the bivalves *Kurtiella bidentata* and *Nucula nitidosa* and the brittle star *Amphiura filiformis,* together accounting for 50 % of the total assemblage.

Macrobenthic Group B – four stations belonged to this group ST07, ST08, ST17 and ST43 all located in the southwestern reaches of the windfarm site (average similarity 37.80). The taxa characterising this group were the ribbon worms Nemertea and the polychaete *Spiophanes bombyx* together accounting for 54 % of the total assemblage.

Macrobenthic Group C – Only two stations fell into this group: ST10 and ST27 (average similarity 45.33). Key taxa in this group were the polychaetes *Sthenelais limicola* and *Nephtys cirrosa* and the amphipod *Bathyporeia gracilis* all together accounting for the 53 % of the total assemblage.


Macrobenthic Group D – five stations belonged to this group: ST26, ST37, ST41, ST42 and ST48 (average similarity 34.11). The taxa characterising this group were the polychaetes *Scalibregma inflatum, S. limicola, N. cirrosa* and *Scoloplos armiger*, all together accounting for 54 % of the total assemblage.

7.4.1. Biotope Assignment

For each of the four Macrobenthic Groups determined using cluster analysis, biotopes were assigned according to the JNCC classification tool (JNCC 2015) based upon their faunal and physical characteristics. Correlation of EUNIS/MNCR (Marine Nature Conservation Review) biotopes was undertaken using the JNCC correlation table (JNCC 2018).

Macrobenthic Group A - The biotope that most closely aligned with the community observed in this group was "A5.351 *Amphiura filiformis, Mysella bidentata* and *Abra nitida* in circalittoral sandy mud", which is consistent with the finer sediments recorded in at these locations characterised by notable mud contributions (Figure 9).

Macrobenthic Group B, **Macrobenthic Group C** and **Macrobenthic Group D** were characterised by the polychaetes *N. cirrosa*, *S. limicola*, *S. bombyx* and *S. armiger*, amphipods of the genus *Bathyporeia* with variable abundances of the bivalve *Abra alba*. The biotope that most closely aligned with this assemblage was "A5.252 *Abra prismatica*, *Bathyporeia elegans* and polychaetes in circalittoral fine sand", which is consistent with sediments being sandier at these locations compared the Macrobenthic Group A and representative of the textural groups Sand and Slightly Gravelly Sand.

Figure 18 Two-dimensional nMDS ordination of macrobenthic communities sampled across the Morecambe OWF site, based on square root transformed and Bray-Curtis similarity abundance data. Macrobenthic Groups were identified at 31 % similarity.

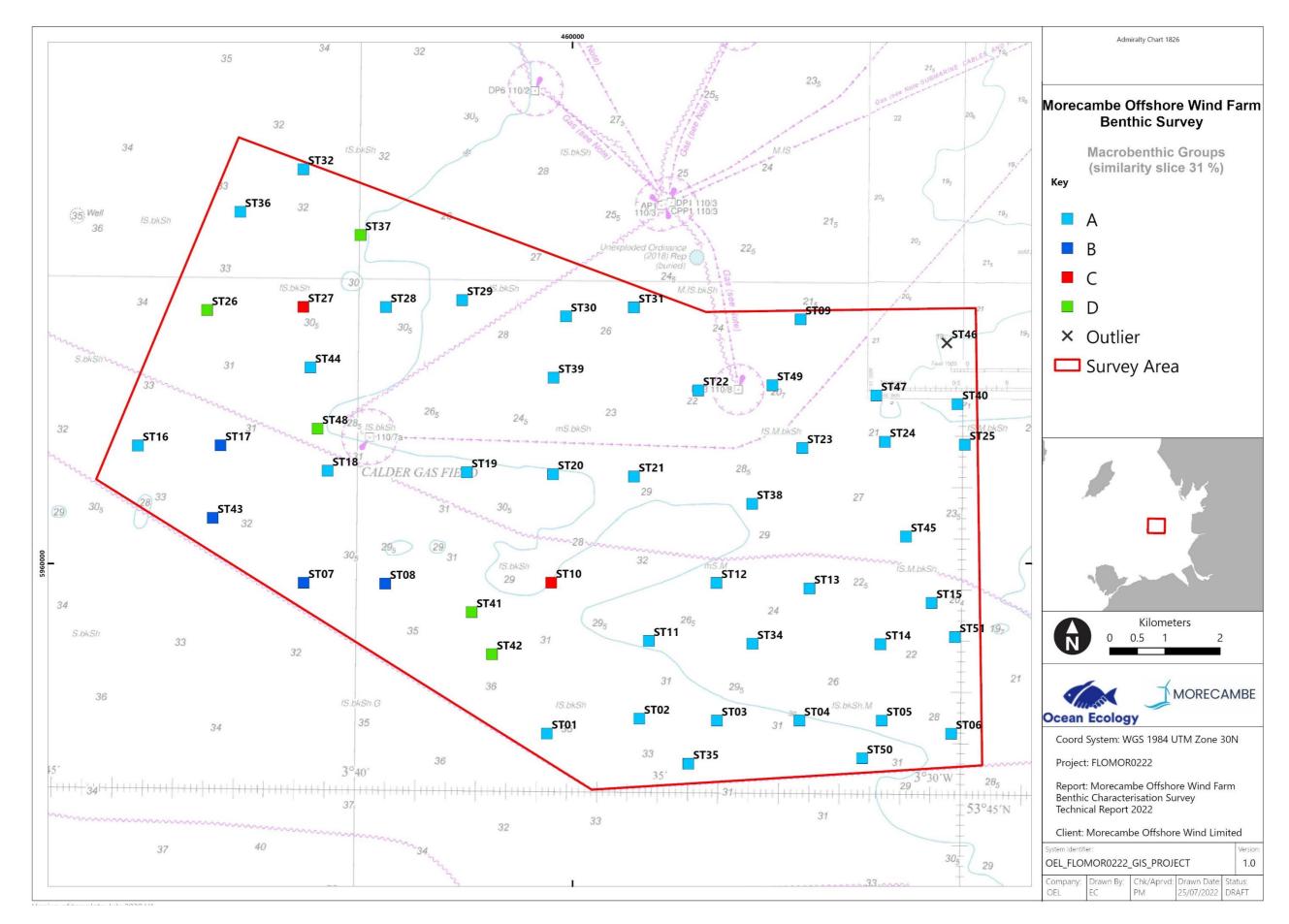


Figure 19 Spatial distribution of macrobenthic groups as determined from cluster analysis of abundance data.

7.5. Seabed Imagery

A total of 47 DDC stations and four DDC transects were sampled throughout the duration of the survey resulting in the collection of 404 still images. Of these, 18 were duplicates images, therefore a total of 386 images were analysed for this report.

The sampling logs for all seabed imagery collected during this survey are presented in Appendices XV and XVI. An overview of all EUNIS BSH and EUNIS level 4 categories identified is presented in Table 11. Example imagery of each EUNIS habitat encountered is presented in Plate 3.

 Table 11 EUNIS classifications (both 2012 and 2022 codes) identified within the Morecambe Bay OWF

 Benthic Survey area.

EUNIS BSH (2012)	EUNIS Level 4 (2012)	EUNIS Description	EUNIS Code (2022)	
A5.2 – Subtidal Sand	A5.25	Circalittoral fine sand	MC52	
A3.2 – Subtidal Salid	A5.26	Circalittoral muddy sand		
A5.3 – Subtidal Mud	A5.35	Circalittoral sandy mud	MC62	
A5.4 – Subtidal Mixed Sediment	A5.44	Circalittoral mixed sediments	MC42	

Four EUNIS habitat types were encountered across the windfarm site: A5.25 'Circalittoral fine sand'; A5.26 'Circalittoral muddy sand'; A5.35 'Circalittoral sandy mud'; and A5.44 'Circalittoral mixed sediment' (Table 11). A5.26 was the most frequently encountered habitat type, having been assigned to 265 of the 386 analysed images. A5.25 was identified in 63 images, A5.44 in 47 images and A.35 in 11 images. The spatial distribution of habitat types within the windfarm site is presented in Figure 20. Areas to the west of the windfarm site were found to be dominated by circalittoral fine sands (A5.25), with circalittoral muddy sand (A5.26) dominating the majority of the windfarm site. Circalittoral sandy muds (A5.35) and circalittoral mixed sediments (A5.44) were largely interspersed within large areas of circalittoral muddy sand (A5.26), with the exception of transects 01 and 04 where there was a prevalence of the circalittoral mixed sediment (A5.44) habitat.

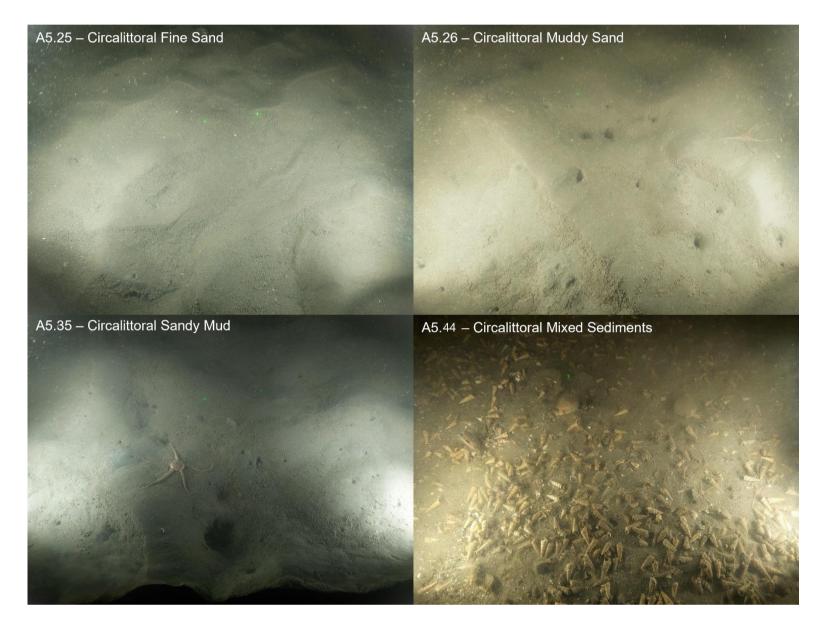


Plate 3 Example imagery of EUNIS classifications identified within the Morecambe OWF site..

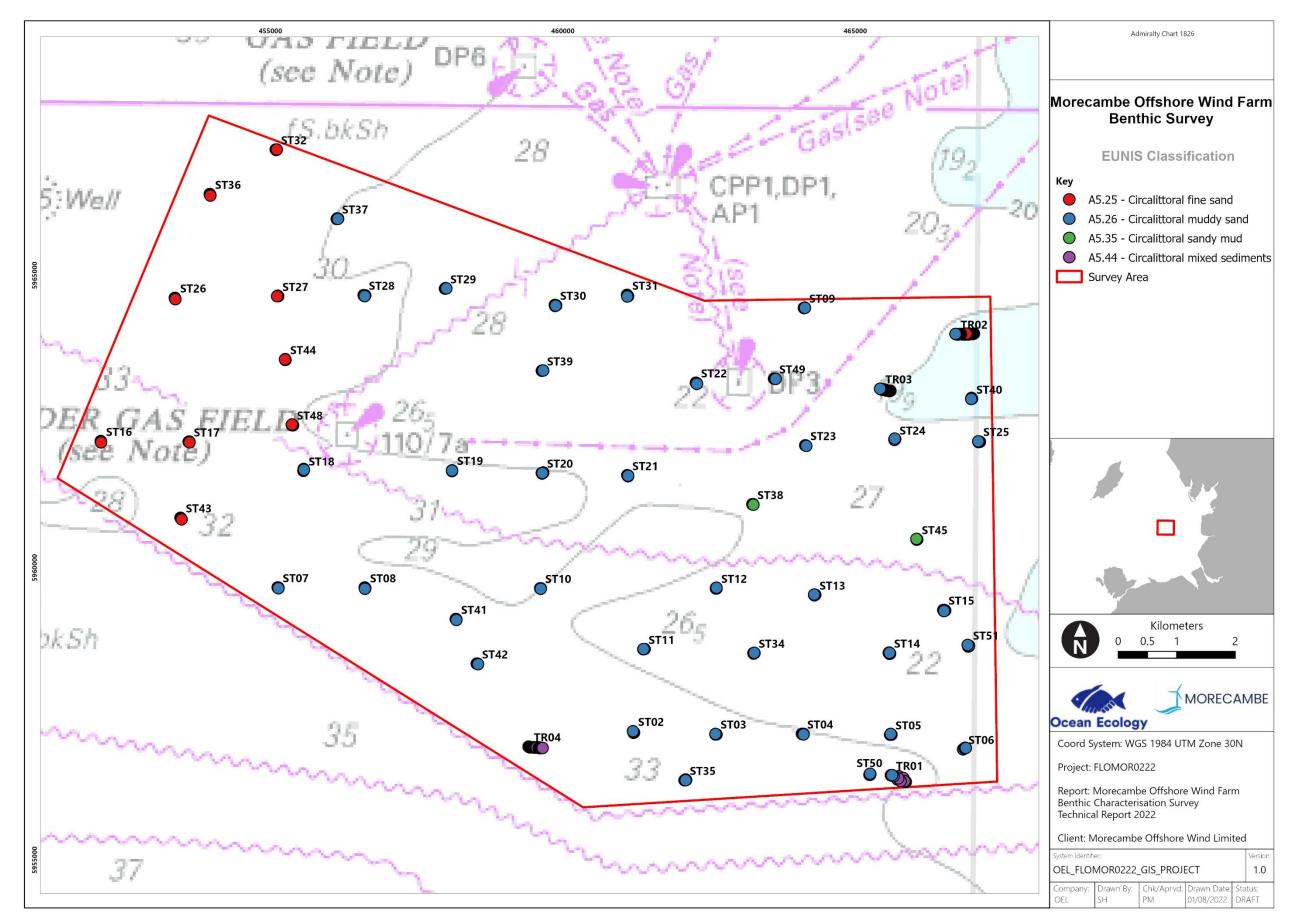


Figure 20 EUNIS habitats encountered across the Morecambe OWF site .

7.6. Habitats of Conservation Value

Areas of burrowed mud were identified across the windfarm site within areas of EUNIS habitat A5.26 'Circalittoral muddy sand'. Areas where megafaunal burrows were present matched the criteria required to be classified as the OSPAR/FOCI habitat 'Sea-pens and burrowing megafauna'. Whilst no sea-pens were identified in DDC imagery collected, the presence of sea-pens is not required to meet this habitat classification based on JNCC's interpretation of the OSPAR habitat definition (Robson 2014). Two individuals of the burrowing crab *Corystes cassivelaunus* were identified in DDC imagery, one from ST02 and one from ST30. The spatial distribution of megafaunal burrow density and burrowing megafauna is presented in Figure 21. A maximum average density of 43 m² of megafaunal burrows was recorded at ST24, with a minimum of 8 m² recorded at ST25. No clear pattern in the distribution of burrow density was identified in the data, with areas of higher and lower burrow density interspersed throughout the windfarm site. A full sea-pen and burrowing megafauna (SPBM) assessment can be found in Appendix XVII.

No areas of potential Annex I reef were identified in DDC imagery and therefore no formal reef assessments were conducted.

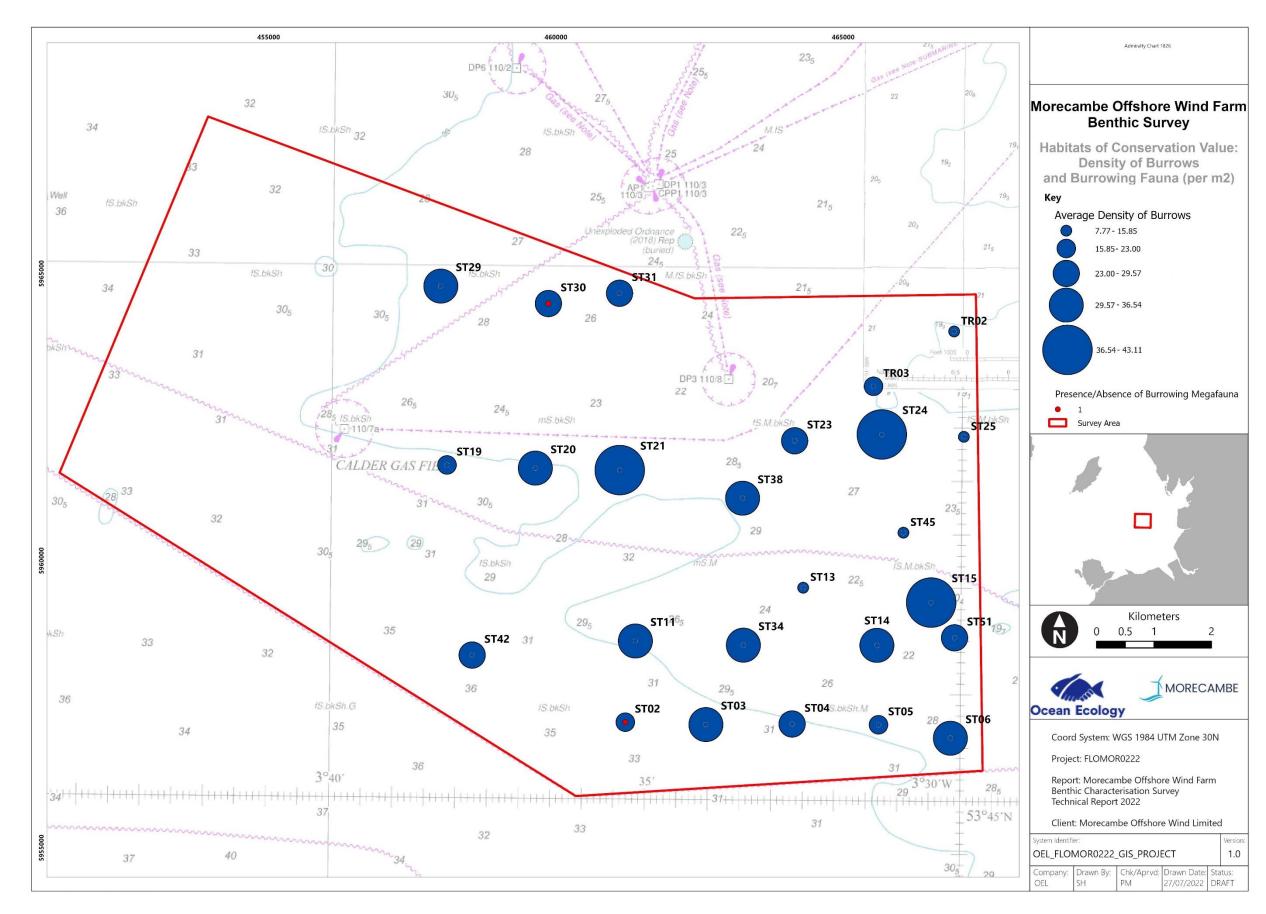


Figure 21 Density of burrows (per m²) and abundance of burrowing megafauna across the Morecambe OWF site.

7.7. Habitat/Biotope Mapping

To map the principal habitats that occurred throughout the Morecambe OWF site, a full interrogation of available geophysical data in combination with grab sample data (PSD and macrobenthos) was undertaken. As the two habitats identified across the windfarm site consisted of soft sediments, A5.25 and A5.35, seabed imagery was only used to corroborate PSD and macrobenthic data as it is limited in discriminating between soft substrates (i.e., habitats A5.25 and A5.26 look very similar in seabed imagery). Similarly, the acoustic data did not indicate any major anomalies between these two soft substrates which in turn hindered the delineation of polygons on the map as confidence in assessing their boundaries was low. Nevertheless, PSD and macrobenthic data clearly indicated the presence of two biotopes across the windfarm site: A5.252 'Abra prismatica, Bathyporeia elegans and polychaetes in circalittoral fine sand' in the middle and to the east of the windfarm site and A5.351 'Amphiura filiformis, Mysella bidentata and Abra nitida in circalittoral sandy mud' to the west of the windfarm site as illustrated in Figure 22. Keeping into account the low confidence associated to the polygons encompassing the biotopes observed across the Morecambe OWF site, the area covered by A5.252 was estimated to be 21.38 km² in total, while the area covered by A5.351 was estimated at 107.21 km² in total (Figure 23).

Rationale for the designated biotopes is provided in Appendix XVIII.

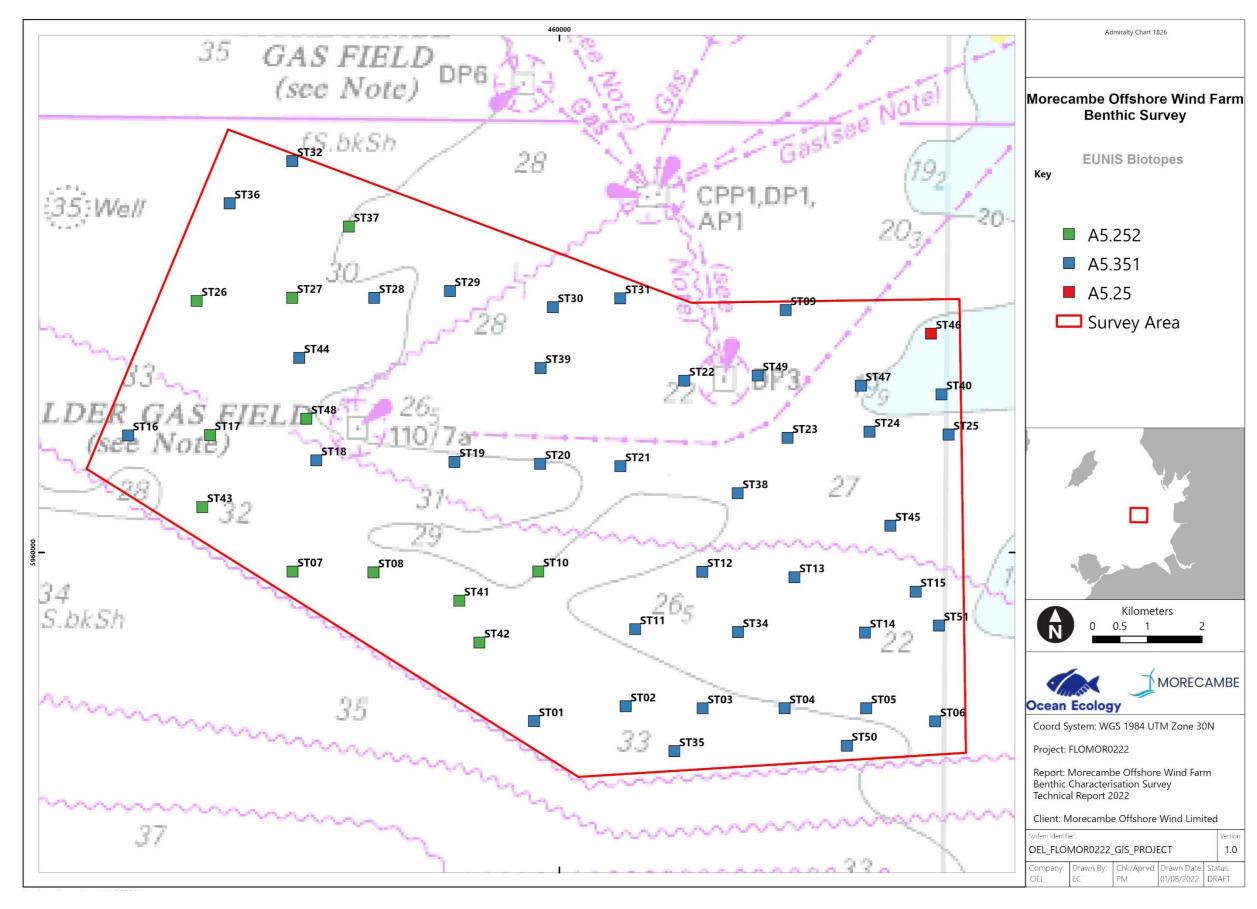


Figure 22 EUNIS Biotopes as determined from interrogation of sediment and macrobenthic data.

• OEL

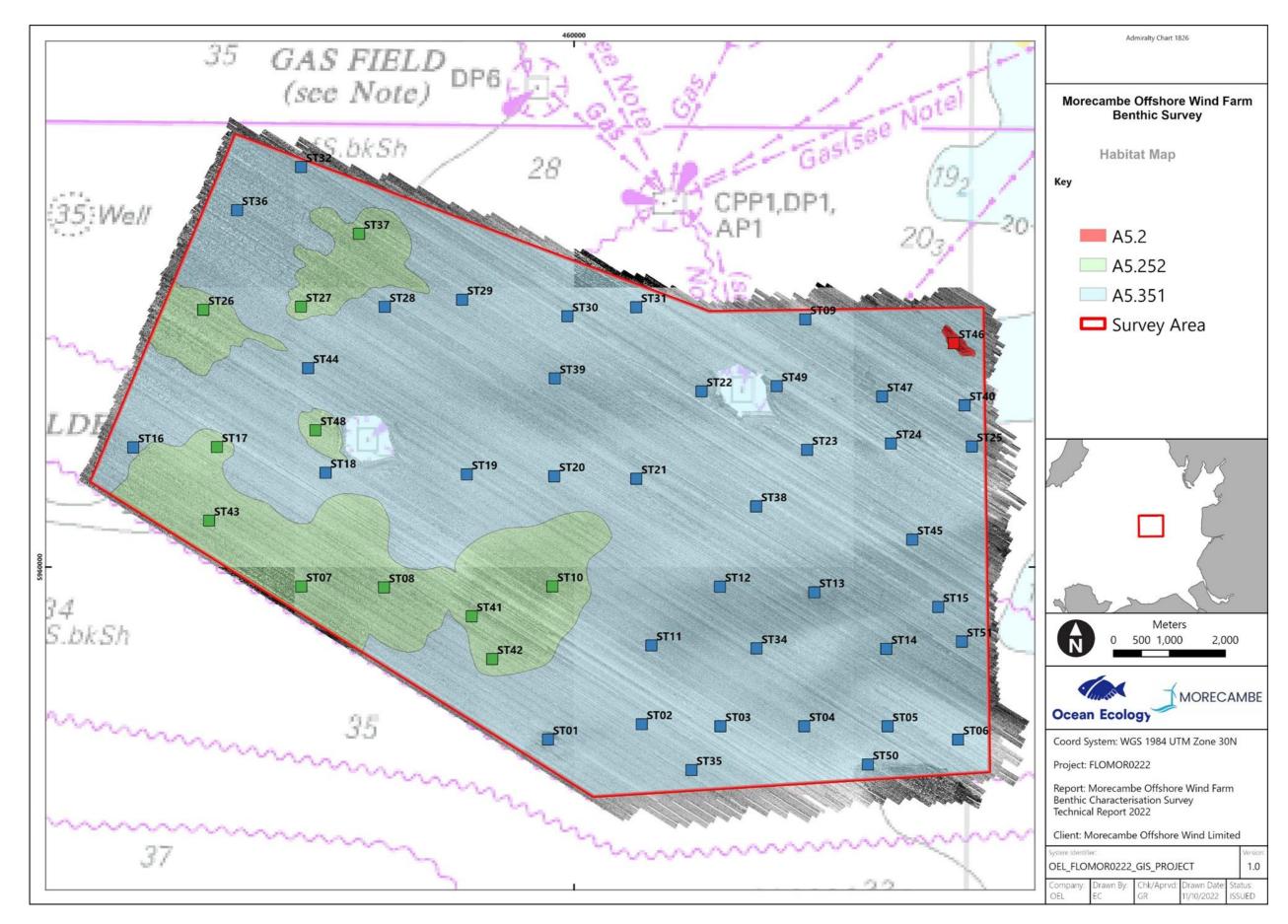


Figure 23 Habitat map based on the interrogation of all available data.

8. Discussion

This report presents the results of the macrobenthic and sediment analysis with the aim to set out the environmental baseline conditions across the proposed Morecambe OWF site to inform final engineering design and the installation process of the proposed windfarm as well as providing a robust dataset for future comparison if required.

8.1. Sediments

Some variation in sediment types was observed across the windfarm site; however, most stations were dominated by sand (Figure 8). Mud content was higher in the middle and to the east of the windfarm site, while gravel content was higher (albeit it low) moving offshore and to the west of the windfarm site. This was reflected in the Textural Groups recorded across the windfarm site with muddier stations classified as Muddy Sand and coarser stations classified as Sand and Slightly Gravelly Sand. These types of sediment are among the most common habitats found in subtidal settings across the UK coast and fall in the list of habitats of principal importance under Section 7 of the Environment (Wales) Act 2016 'Subtidal sands and gravels' and 'Subtidal mixed muddy sediments' and under Section 41 of the Natural Environment and Rural Communities (NERC) Act 2006 as 'Subtidal sands and gravels' and 'Mud habitats in deep water.

No pattern was observed between stations with higher mud (> 20 %) and TOM content despite studies based on the coastal ocean and marine environment having found a positive relationship between organic matter content and proportions of finer sediment grain size (Winterwerp & van Kesteren 2004, McBreen et al. 2008, Hunt et al. 2020). Relatively high TOC and TOM content was observed at stations located to the east of the windfarm site, closer to land. This could suggest runoff from land as a potential source of the organic matter found at these locations. Average TOC compares well with global sediment average TOC content for the deep ocean (0.5 %) (Seiter et al. 2004).

Several guidelines exist to assess the degree of contamination and likely ecological impacts of contaminants in marine sediments. These regulations defined the levels below which effects are of no concern and/or rarely occur (AL1, BAC, TEL) and the levels above which adverse biological effects are considerable and/or occur frequently (AL2, ERL, PEL). *Ad hoc* decisions need to be made when contaminant concentrations fall between these levels. To note that Cefas ALs1 are typically the most conservative measures to assess sediment contamination and often result in "false positives" meaning that non-toxic sediment samples fail to pass this screening test. Conversely, ALs2 tend to be rather permissive allowing samples with relatively high contaminant concentrations to fall between AL1 and AL2 and thus requiring expert judgment to further assess their potential toxicity (MMO 2015, Mason et al. 2020). Recent studies have been revising these ALs with the goal of reducing the range of concentrations falling between AL1 and AL2 and minimise the number of samples requiring an *ad hoc*

treatment; however, no policy has been made yet based on these recommendations and suggestions (MMO 2015, Mason et al. 2020).

Trace and heavy metal concentrations were overall low across the windfarm site with none of the metals analysed exceeding any of the reference level. In general metal concentrations were relatively higher to the east, closer to land than stations located further offshore, as seen for TOC and TOM. As was an exception to this trend as it exceeded the TEL at three stations ST01, ST26 and ST42 all located to the west of the windfarm site (Figure 12). However, As concentrations never exceeded Cefas AL1 which is the national reference level. As concentrations exceeding the TEL has possibly to do with the TEL being based on North American data and as such it may not be representative of UK conditions (Section 6.2.2) (MMO 2015, Mason et al. 2020). In comparison OSPAR BAC and Cefas ALs are based on UK data and therefore are more suitable for the current assessment. No pattern emerged when comparing stations with elevated As concentrations with the correspondent TOC, TOM and mud content, which could have been related to transportation and deposition of As across the windfarm site. Elevated metal sediment concentrations do not necessarily imply toxicity to benthic communities (Rees et al. 2007) as the bioavailability of these metals is more important than simply concentration levels. Despite the elevated As levels at these three stations, no macrobenthic anomalies were identified at these locations to suggest any adverse effects were present.

Among all PAHs, Naphthalene, Pyrene, Anthracene and Benzo[a]anthracene were the ones found to exceed BAC reference levels at 5 to 6 stations (Table 10). None of the other reference levels was exceeded by any of the analysed PAHs. Stations with elevated PAHs concentrations also had relatively high TOC, TOM and metals concentrations which could be related to transportation and deposition across the windfarm site; however, no macrobenthic anomalies were identified at these locations to suggest any adverse effects were present. When assessing the origin source of PAH compounds in sediments, the ratio between LMW and HMW PAHs was found to be lower than 1 at all stations indicating a pyrogenic origin, similarly the Ph/Ant ratio was lower than 10 at all stations also indicating a pyrogenic source of PAHs (Figure 14). PAHs of pyrogenic origin can derive from various activities which ultimately involve the combustion of organic substances at high temperatures under low oxygen conditions. These may include incomplete combustion of motor fuels, or products derived from the foundry and steel industries. In contrast the FI/Py ratio indicated a petrogenic source of PAHs at most stations (Figure 14). Petrogenic PAHs typically include crude oil and refined crude oil products such as gasoline, heating oil, asphalt, and coal. It is not uncommon to find a mixture of petrogenic and pyrogenic PAHs sources in marine sediment (EPRI 2008, Aly Salem et al. 2014).

As already seen for TOC, TOM, metals and PAHs, also THC was higher to the east of the windfarm site, closer to land than stations located further offshore (Figure 14), suggesting that the proximity to urban settings can result in additional sources of contaminants that can

potentially become stored in coastal sediments. No macrobenthic anomalies were identified at locations with high THC suggesting no adverse effects were present.

Comparison between the concentrations of determinands measured in the sediments of the Liverpool Bay as part of the OSPAR "Levels and trends in marine contaminants and their biological effects monitoring programme" (OSPAR 2020) to those across the windfarm site showed that concentrations were consistently lower across the windfarm site than those recorded in the Liverpool Bay (Table 12).

Table 12 Comparison of mean concentrations of key metals (mgkg⁻¹) and PAHs (μ gkg⁻¹) sampled across the Morecambe OWF site with previous records from (OSPAR 2020).

Analyte	Liverpool Bay (OSPAR)	Morecambe OWF site
As (mg kg⁻¹)	18.92	6.14
Naphthalene (µg kg⁻¹)	35.25	5.56
Pyrene (μg kg ⁻¹)	60.25	14.27
Anthracene (μg kg ⁻¹)	8.15	3.39
Benzo[a]anthracene (µg kg ⁻¹)	47.69	8.05

8.2. Macrobenthos

The macrobenthic assemblage identified across the Morecambe OWF site was made up of a total of 8,127 individuals and 189 different taxa. However, most stations were characterised by the presence of *K. bidentata* which occurred in 88 % of samples. Other key taxa included the brittle star *Amphiura filiformis*, the polychaetes *Sthenelais limicola* and *Scalibregma inflatum* (Figure 15).

Macrobenthic communities can be highly heterogenous as they are heavily influenced by ambient environmental conditions such as sediment composition (Cooper et al. 2011), hydrodynamic forces and physical disturbance (Hall 1994), depth (Ellingsen 2002) and salinity (Thorson 1966). Macrobenthic abundance and diversity varied across the windfarm site however no obvious pattern was observed across stations (Figure 17). Conversely, the four Macrobenthic Groups identified by the multivariate cluster analysis (Section 7.4) did show a clear distinction between stations located in the middle and to the east of the windfarm site and stations located more offshore and to the west. Macrobenthic Group A covered most of the windfarm site and was characterised by high abundances of K. bidentata and A. filiformis. In contrast macrobenthic groups B, C and D were dominated by polychaetes and amphipods and covered the more offshore and western part of the windfarm site. Sediment composition is a key factor in determining macrobenthic community structure (Hall 1994, Cooper et al. 2011), itself defined by ambient conditions. This was clearly reflected in the Macrobenthic Groups detected across the windfarm site with Macrobenthic Group A indicating an affinity for muddier substrates compared to the other macrobenthic groups more typical of sandy substrates with little to no mud. Two biotopes were identified across the windfarm site based on a combination of macrobenthic and sediment data, these were "A5.351 Amphiura filiformis, Mysella bidentata and Abra nitida in circalittoral sandy mud" corresponding to the stations

OEL ı

belonging to Macrobenthic Group A, and "A5.252 *Abra prismatica*, *Bathyporeia elegans* and polychaetes in circalittoral fine sand" including all other stations.

8.3. Seabed Imagery

Four EUNIS habitats were recorded across the Morecambe OWF site: A5.25, A5.26, A5.35, and A5.44 (Table 11). Whilst the BSHs of A5.2 and A5.3 are present in existing EMODnet predictive mapping (Figure 2), the level 4 EUNIS habitats predicted by EMODnet do not align well with the imagery collected in this survey (Figure 20). Circalittoral muddy sand (A5.26) was the dominant habitat type identified here across the majority of the windfarm site, with areas to the west dominated by circalittoral fine sand (A5.25). Isolated areas of the habitats circalittoral sandy mud (A5.35) and circalittoral mixed sediments (A5.44) were also identified.

8.4. Habitats of Conservation Value

JNCC's interpretation of the OSPAR habitat definition for 'sea-pens and burrowing megafauna', whereby no sea-pens need be present and that this habitat can be present in muddy sands (Robson 2014), means that large areas of the OSPAR/FOCI habitat 'Sea-pens and burrowing megafauna' were identified across the windfarm site within the EUNIS habitat A5.26. Sea-pens and burrowing megafauna is as priority habitat listed under Section 41 of the Natural Environment and Rural Communities (NERC) Act 2006 as well as an MCZ FOCI. As there is currently no MPA designated within this area, there is no legislative protection afforded to the observed sea-pen and burrowing megafauna habitats observed within this survey. The identification of this habitat should, however, be acknowledged going forward.

No Annex I habitats were identified within the windfarm site.

8.5. Habitat/Biotope Mapping

PSD and macrobenthic data clearly indicated the presence of two biotopes across the windfarm site: A5.252 '*Abra prismatica*, *Bathyporeia elegans* and polychaetes in circalittoral fine sand' in the middle and to the east of the windfarm site, and A5.351 '*Amphiura filiformis*, *Mysella bidentata* and *Abra nitida* in circalittoral sandy mud' to the west (Figure 22). Seabed imagery and acoustic data was used sparingly in the determination of these biotopes due to the similarity in the appearance of soft substrate habitats (i.e., A5.25 and A5.26) in these types of data. It follows that it is difficult to confidently identify strict boundaries between the two biotopes based on acoustic and imagery data, however a habitat map has been presented based on the interrogation of all available data and low confidence scores have been assigned to the polygons delineating each habitat/biotope to reflect these limitations.

9. References

- Al-hejuje MM, Hussain NA, Al-saad HT (2015) Total Petroleum Hydrocarbons (TPHs), nalkanes and Polynuclear Aromatic Hydrocarbons (PAHs) in water of Shatt Al-Arab River
 – part 1. Global Journal of Biology, Agriculture and Health Sciences.
- Aly Salem DMS, Morsy FAEM, El Nemr A, El-Sikaily A, Khaled A (2014) The monitoring and risk assessment of aliphatic and aromatic hydrocarbons in sediments of the Red Sea, Egypt. Egyptian Journal of Aquatic Research.
- CCME (2001) Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Environmental Protection.
- Clarke KR, Gorley RN (2015) PRIMER v7: User Manual/Tutorial.
- Clarke KR, Tweedley JR, Valesini FJ (2014) Simple shade plots aid better long-term choices of data pre-treatment in multivariate assemblage studies. Journal of the Marine Biological Association of the United Kingdom 94:1–16.
- Cooper KM, Curtis M, Wan Hussin WMR, Barrio Froján CRS, Defew EC, Nye V, Paterson DM (2011) Implications of dredging induced changes in sediment particle size composition for the structure and function of marine benthic macrofaunal communities. Marine Pollution Bulletin 62:2087–2094.
- DEFRA (2003) The use of Action Levels in the Assessment of Dredged Material Placement at Sea and in Estuarine Areas under FEPA (II), Final Project Report.
- Edokpayi JN, Odiyo JO, Popoola OE, Msagati TAM (2016) Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. International Journal of Environmental Research and Public Health.
- Eleftheriou A, Basford DJ (1989) The macrobenthic infauna of the offshore northern North Sea. Journal of the Marine Biological Association 69:123–143.
- Ellingsen K (2002) Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. Marine Ecology Progress Series 232:15–27.
- EMODnet (2021) EMODnet Seabed Habitats Homepage
- EPRI (2008) Examination of the Sources of Polycyclic Aromatic Hydrocarbon (PAH) in Urban Background Soil. Palo Alto, CA.
- Folk RL (1954) The distribution between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology 62:344–359.

- OEL I
- Golding N, Albrecht J, McBreen F (2020) Refining the criteria for defining areas with a 'low resemblance' to Annex I stony reef. JNCC Report No 656.
- Gubbay S (2007) Defining and managing Sabellaria spinulosa reefs: Report of an inter-agency workshop 1-2 May, 2007. JNCC Report No405 44:22.
- Hall SJ (1994) Physical disturbance and marine benthic communities: life in unconsolidated sediments. Oceanography and Marine Biology: An Annual Review 32:179–239.
- Hitchin R, Turner, Verling (2015) Epibiota Remote Monitoring from Digital Imagery: Operational Guidelines.
- Holstein J (2018) Worms: Retriving Aphia Information from World Register of Marine Species. package ve.
- Hunt C, Demšar U, Dove D, Smeaton C, Cooper R, Austin WEN (2020) Quantifying Marine Sedimentary Carbon: A New Spatial Analysis Approach Using Seafloor Acoustics, Imagery, and Ground-Truthing Data in Scotland. Frontiers in Marine Science.
- Ines Z, Amina B, Mahmoud R, Dalila S-M (2013) Aliphatic and Aromatic Biomarkers for Petroleum Hydrocarbon Monitoring in Khniss Tunisian-Coast, (Mediterranean Sea). Procedia Environmental Sciences.
- Irving R (2009) The identification of the main characteristics of stony reef habitats under the Habitats Directive. Summary report of an inter-agency workshop 26-27 March 2008. JNCC Rep No 432:44.
- JNCC (2018) Marine habitat correlation tables version 201801
- JNCC (2015) The Marine Habitat Classification for Britain and Ireland Version 15.03.
- Jones R, Unsworth R, Hawes J, Griffin R (2021) Improving benthic biodiversity assessments in turbid aquatic environments. Aquatic Conservation: Marine and Freshwater Ecosystems 31:1379–1391.
- Junttila J, Carroll J, Dijkstra N (2015) Variability of present and past PAH (Polyaromatic hydrocarbons) concentrations in sediments of the SW Barents Sea. Norsk Geologisk Tidsskrift.
- Kafilzadeh F, Shiva AH, Malekpour R (2011) Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Water and Sediments of the Kor River, Iran. Middle-East Journal of Scientific Research.
- Langenkämper D, Zurowietz M, Schoening T, Nattkemper TW (2017) BIIGLE 2.0 Browsing and Annotating Large Marine Image Collections. Frontiers in Marine Science 4:83.

- Mason C, Lonsdale J, Vivian C, Griffith A, Warford L (2020) Review of Action Levels used for assessing dredging and disposal marine licences.
- McBreen F, Wilson JG, Mackie ASY, Nic Aonghusa C (2008) Seabed mapping in the southern Irish Sea: Predicting benthic biological communities based on sediment characteristics. In: *Hydrobiologia*.
- MMO (2015) High Level Review of Current UK Action Level Guidance. A report produced for the Marine Management Organisation. MMO Project No: 1053.
- Natural England (2021a) Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards - Phase I: Expectations for pre-application baseline data for designated nature conservation and landscape receptors to support offshore wind application.
- Natural England (2021b) Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards - Phase I: Expectations for pre-application baseline data for designated nature conservation and landscape receptors to support offshore wind application.
- NJDEP (2009) Ecological Screening Criteria (ESC).
- Noble-James T, Jesus A, Fionnuala M (2018) Monitoring guidance for marine benthic habitats (Revised 2018).
- OSPAR (2020) Levels and trends in marine contaminants and their biological effects CEMP Assessment report 2019 2020.
- OSPAR (2004) OSPAR Guidelines for Monitoring the Environmental Impact of Offshore Oil and Gas Activities Reference number: 2004-11. 19.
- OSPAR, Webster L, Fryer R, Davies I, Roose P, Moffat C (2009) Background Document on CEMP Assessment Criteria for QSR 2010. Monitoring and Assessment Series.
- Page DS, Boehm PD, Douglas GS, Bence AE, Burns WA, Mankiewicz PJ (1999) Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: A case study in Prince William Sound, Alaska. Marine Pollution Bulletin.
- Parry ME V (2019) Guidance on Assigning Benthic Biotopes using EUNIS or the Marine Habitat Classification of Britain and Ireland (Revised 2019).
- R Core Team (2020) R: A Language and Environment for Statistical Computing.
- Rees HL, Eggleton JD, Rachor E, Vanden Berghe E (2007) Structure and Dynamics of the North Sea Benthos. ICES Cooperative Research report no 288:258.

- Robson L (2014) JNCC clarifications on the habitat definitions of two habitat Features of Conservation Importance: Mud habitats in deep water, and Sea-pen and burrowing megafauna communities.
- Seiter K, Hensen C, Schröter J, Zabel M (2004) Organic carbon content in surface sediments -Defining regional provinces. Deep-Sea Research Part I: Oceanographic Research Papers.
- Thorson G (1966) Some factors influencing the recruitment and establishment of marine benthic communities. Netherlands Journal of Sea Research.
- Turner JA, Hitchin R, Verling E, van Rein H (2016) Epibiota remote monitoring from digital imagery: Interpretation guidelines.
- Venkatesan MI (1988) Occurrence and possible sources of perylene in marine sediments-a review. Marine Chemistry.
- Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392.
- Winterwerp JC, van Kesteren WGM (2004) Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment.
- Worsfold T, Hall D (2010a) Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol.
- Worsfold T, Hall D (2010b) National Marine Biological Analytical Quality Control Scheme Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol.

Appendix I - Project Execution Plan

Ocean Ecology

Marine Surveys, Analysis & Consultancy

Morecambe Offshore Wind Farm Project Execution Plan

REF: OEL_FLOMOR0222_PEP_V02

T: +44 (0) 1452 740697 E: info@ocean-ecology.com W: www.ocean-ecology.com Tw: @Ocean_Ecology

Details

Version	Date	Description	Author(s)	Reviewed By
01	20/04/2022	Draft	Gary Robinson	Elena Lo Giudice Cappelli
02	22/04/2022	Revised following client review	-	Gary Robinson
03	16/05/2022	Revised following NE comments	-	Ross Griffin

Updates

Section	Description	Page
1.3	Reference to NE best practice guidelines now included	8
1.3	Figure 1 updated – indicative turbine locations removed	9
4.2	Figure 2 updated – indicative turbine locations removed	13
4.2	Figure 3 updated – indicative turbine locations removed	14
4.3	Additional detail relating to geophysical interpretation and spatial layout of sampling array included	15
4.3	Table 1 updated to reflect updated sampling plan	15
4.3	Table 2 updated to reflect updated sampling plan	16
4.4	Table 2 updated to reflect TR04 relocated to BSH A5.2 / A5.1	16
4.5	Figure 4 updated to reflect updated sampling plan	18
4.5	Figure 5 updated to reflect updated sampling plan	19
5.3.1	Additional text on combined DDC and grab locations	21
5.4	Clarification detail provided on MMO validated methods and determinands for testing.	23-24
6.3.1 / 6.3.2	Addition of text relating to INNS now added	31 / 32
6.4.2	Table 12 – added detail on technical reporting	33
1.3	Update to reference to NE best practice guidance	8
4.1	Inclusion of reference to NE best practice guidance	12
6.4.2	Inclusion of reference to NE best practice guidance	34

Contents

1. Int	troduction	7
1.1.	Project Overview	7
1.2.	Site Information	7
1.2	2.1. Site Location	7
1.2	2.2. Designated Sites	7
1.3.	Document Overview	8
2. He	ealth and Safety	10
2.1.	Risk Assessment	
2.2.	Health, Safety and Environmental Plan	
2.3.	Hazard Identification and Risk Assessment	
3. Ov	/erview of Scope	11
3.1.	Overview	
3.2.	Outline of Scope	
3.3.	Outline of Methods	
4. Sa	mpling Plan	12
4.1.	Overview	
4.2.	Sampling Plan Procedure	
4.3.	Drop Down Camera and Grab Locations	
4.3	8.1. Approach	
4.4.	Drop Down Camera Transects	
4.4	l.1. Approach	
4.5.	Timing	
5. Su	Irvey Methods	21
5.1.	Survey Vessel	21
5.2.	Equipment	21
5.3.	Seabed Imagery Collection	
5.3	8.1. Drop-Down Video System	
5.4.	Benthic Grab Sampling	
5.4	I.1. Sample Collection	24
5.4	I.2. Grab Sample Processing (PSD & MACRO)	
5.4	I.3. Grab Sample Processing (CONTAMINANTS)	
5.5.	Navigation Equipment	25
5.6.	Subsea Positioning	
5.6	5.1. Positional Checks	26
5.7.	Navigation Software	

	5.8.	Project	t Parameters	26
	5.8.1	. Но	orizontal Reference systems	26
	5.8.2	. Ur	nit Format and Conversions	28
6.	Pos	t-Surve	ey Analysis & Reporting	29
	6.1.	Benthic	c Grab Sample Analysis	29
	6.2.	Particle	e Size Distribution (PSD) Analysis	30
	6.3.	Seabed	d Imagery Analysis	31
	6.3.1	. Tie	er 1 Analysis	32
	6.3.2		ier 2 Analysis	
	6.4.	Reporti	ing	34
	6.4.1	. Fie	eld Report	34
	6.4.2	. Te	echnical Report	34
7.	Ref	erences	s	36

List of Figures

Figure 1 The location and project layout of the MOWF in the Northeast Irish Sea	9
Figure 2 Overview of the MOWF site, results of 2021 geophysical survey campaign (MBES	and
SSS) used to inform spatial distribution of sampling locations and identify features of inte	erest
for investigation with DDC Transects.	13
Figure 3 Overview of the MOWF site and associated surface and sub-surface hazards use	d to
microsite sampling locations	14
Figure 4 Locations of MOWF DDC and grab sampling stations.	19
Figure 5 Locations of MOWF DDC transects.	20

List of Tables

SH) and
15
SH) and
16
21
21
ntworth
31

Table 11 Characteristics of Sabellaria spinulosa reef (Gubbay 2007)	32
Table 12 Outline of the offshore benthic baseline technical report contents.	34

List of Plates

Plate 1 OEL's dedicated survey vessel, 'Seren Las'	21
Plate 2 Left: OEL freshwater housing camera system. Right: The camera system	topside setup.

Abbreviations

BIIGLE	Bio-Image Indexing and Graphical Labelling Environment
BSH	Broadscale Habitat
DDC	Drop-Down Camera
dGPS	Differential Global Positioning System
ECR	Export Cable Route
EUNIS	European Nature Information System
FOCI	Feature of Conservation Importance
GPS	Global Positioning System
НА	Habitat Assessment
HD	High Definition
НОСІ	Habitat of Conservation Importance
INNS	Invasive Non-Native Species
JNCC	Joint Nature Conservation Committee
КР	Kilometre Point
LED	Light-Emitting Diode
MBES	Multibeam Echosounder
MCA	Maritime and Coastguard Agency
MCZ	Marine Conservation Zone
MOWF	Morecambe Offshore Windfarm
MP	Megapixel
MSFD	Marine Strategy Framework Directive
MW	Megawatt
NE	Natural England
NMBAQC	NE Atlantic Marine Biological Analytical Quality Control
OEL	Ocean Ecology Ltd
OWF	Offshore Windfarm
PEP	Project Execution Plan
PSD	Particle Size Distribution
QAF	Quality Assurance Framework
RAMS	Risk Assessment Method Statement
SAC	Special Area of Conservation
SBAS	Satellite-based Augmentation System
SoW	Scope of Work
SPA	Special Protection Area
SSS	Side-Scan Sonar
UPS	Uninterruptable Power Supply
USBL	Ultra-Short Baseline
UTC	Universal Time Coordinated
UTM	Universal Transverse Mercator
WTG	Wind Turbine Generator

1. Introduction

1.1. Project Overview

Morecambe Offshore Windfarm (MOWF) is a proposed offshore windfarm (OWF) located in the Irish Sea (Figure 1) with an expected nominal capacity of 480 megawatts (MW). The Project is being developed by Offshore Wind Ltd: a joint venture between Cobra Instalaciones y Servicios, S.A., and Flotation Energy plc. The Morecambe OWF site is located in the Northeast Irish Sea with water depths in the array area ranging between 20 and 35 m.

There is a requirement for baseline information on the sediment quality, environment and benthic habitats from within the proposed wind farm site and Floatation Energy have contracted OEL to undertake a benthic characterisation survey of the site. The key focus of the benthic characterisation survey will be to provide accurate ground truthing to the geophysical data using a Drop-Down Camera (DDC) and sediment grab sampling and to form a baseline for future monitoring of the survey area upon which any changes to the sediment characteristics, macrobenthic communities and seabed physico-chemical properties can be monitored.

1.2. Site Information

1.2.1. Site Location

The MOWF site is located in the Northeast Irish Sea, approximately 20 nautical miles due East of Blackpool on the North West coast of England. There is no Export Cable Route (ECR) currently proposed for the development and therefore all survey works are located within the consented array boundary.

Water depths in the array area range between 20 and 35 m.

1.2.2. Designated Sites

The MOWF site is located to the immediate west of the Liverpool Bay / Bae Lerpwl Special Protection Area (SPA) with its northern and eastern boundaries adjoining but not intersecting that of the SPA (Figure 1). Liverpool Bay / Bae Lerpwl SPA is in the east of the Irish Sea, bordering the coastlines of north-west England and north Wales. The boundary of Liverpool Bay / Bae Lerpwl SPA extends beyond 12 nautical miles and therefore lies partly in Welsh and English territorial waters and partly in offshore waters.

It is classified for the protection of red-throated diver (*Gavia stellata*), common scoter (*Melanitta nigra*), and little gull (*Hydrocoloeus minutus*) in the non-breeding season; common tern (*Sterna hirundo*) and little tern (*Sterna albifrons*) in the breeding season, and as an internationally important waterbird assemblage.

Further to the east of the survey area are the Fylde Marine Conservation Zone (MCZ), the Shell Flat and Lune Deep Special Area of Conservation (SAC) (Figure 1).

1.3. Document Overview

This document sets out the Project Execution Plan (PEP) for an offshore environmental camera and benthic grab survey to be undertaken in May 2022 by Ocean Ecology Limited (OEL) onboard their dedicated survey vessel, *Seren Las* as part of the wider pre-construction site characterisation programme.

This PEP has been produced to ensure that this characterisation benthic survey is aligned to Natural England's (NE) "Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards" (Natural England 2021a b).

The objective of this PEP is to detail the following aspects of the project:

- Scope of Work (SoW)
- Sampling Plan
- Project Plan of Work (Timeline)
- Equipment and Vessel summary
- Project personnel summary
- Processing and Reporting deliverables
- Quality processes and procedures relevant to this work scope

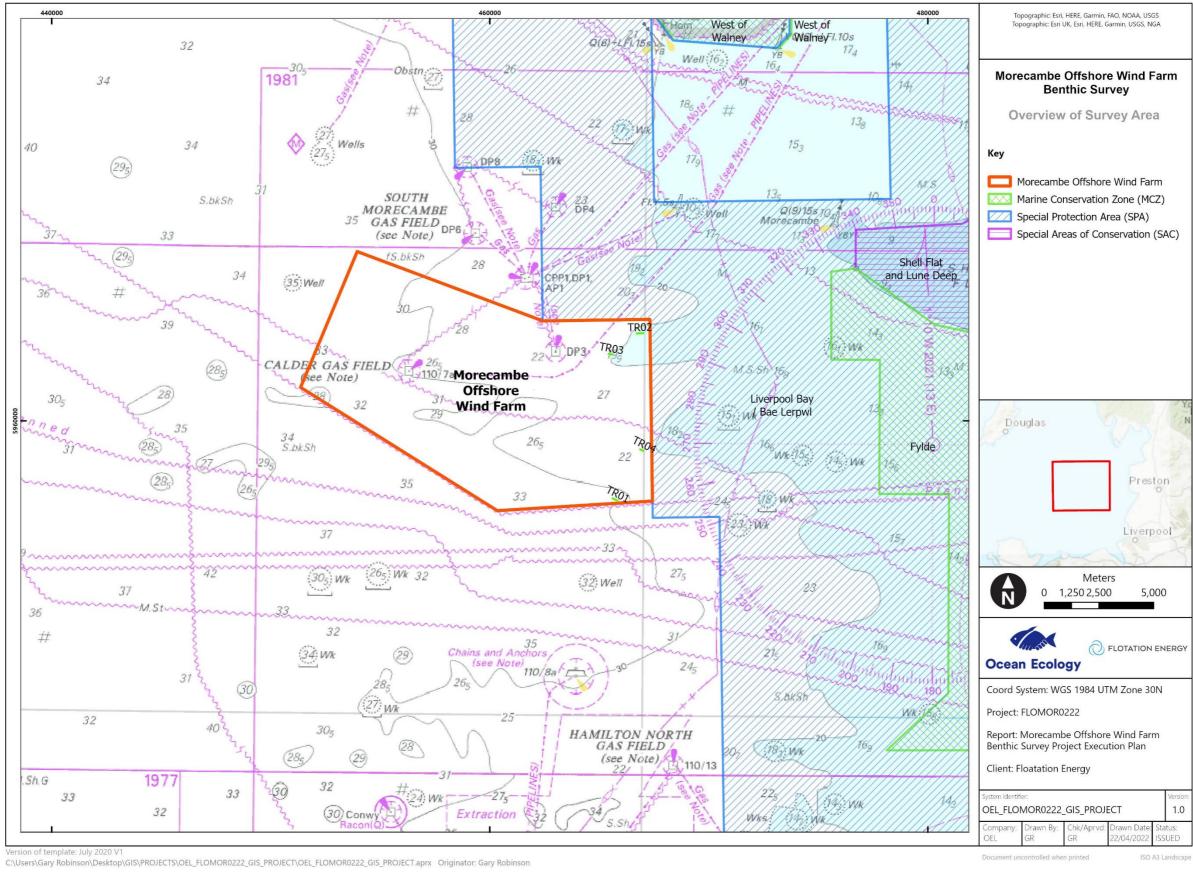


Figure 1 The location and project layout of the MOWF in the Northeast Irish Sea.

2. Health and Safety

2.1. Risk Assessment

A project specific Risk Assessment Method Statement (RAMS) (OEL_HSE_RAM_FLOMOR0222_V01) has been produced and will be reviewed on-board and adjusted as appropriate during mobilisation. All personnel joining the project must read, understand and sign this document prior to sailing.

2.2. Health, Safety and Environmental Plan

A project specific Health, Safety & Environment Plan (OEL_HSE_HSP_FLOMOR0222_V01) including Emergency Response Procedures has been produced and will be reviewed on-board and adjusted as appropriate during mobilisation. All personnel joining the project must read, understand and sign this document prior to sailing.

2.3. Hazard Identification and Risk Assessment

A Hazard Identification and Risk Assessment meeting is scheduled on Friday 29th April prior to environmental operations commencing. This meeting will aim to discuss the presented RAMS (OEL_HSE_RAM_FLOMOR0222_V01) for the environmental SoW and ensure that all potential hazards are both identified, and suitably and sufficiently mitigated.

3. Overview of Scope

3.1. Overview

The benthic survey will collect benthic grab samples for subsequent macrobenthic and Particle Size Distribution (PSD) analyses at a total of 50 sampling stations across the proposed array area, while contaminant analysis will be done on a subset of 20 stations. Seabed imagery will be collected with a Drop-Down Camera (DDC) system at each of the 50 grab sampling stations prior to grab deployment to ensure the target location is clear of any obstructions or protected habitats (e.g., Annex I).

In addition, seabed imagery will be collected along three DDC transects which have been located over features of interest within the array area to aid in the description of the seabed, identify Annex I habitats, archaeological finds and ground truth the geophysical data collected through November and December 2021.

3.2. Outline of Scope

The benthic survey design includes the following:

- 50 stations to be sampled with a 0.1 m² grab sampler with prior investigation by DDC. Samples collected are to be suitable for PSD and macrobenthic analyses. Only single PSD and faunal samples are required from each site
- Contaminant samples to be taken at up to 20 of the sampling locations.
- DDC deployments will be undertaken at each grab location.
- Three DDC transects across the site to ground truth geophysical data and identify any features of interest

3.3. Outline of Methods

Detailed method statements for both camera and grab operations including sampling, processing, analysis and reporting are provided in Sections 5 and 6 of this PEP.

4. Sampling Plan

4.1. Overview

The benthic sampling plan has been developed in line with Phase I of Natural England's "Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards" (Natural England 2021a) to provide maximum geographic coverage of the proposed survey area, whilst also ensuring that all key habitats and communities likely to be encountered across the survey area are adequately targeted. The key principles underpinning the survey design were therefore to:

- Provide adequate spatial coverage of the array area;
- Ensure representative sampling of all main sediment types is undertaken; and
- Ensure representative examples of all potential features of conservation interest (e.g., Annex I reefs) are adequately ground-truthed.

4.2. Sampling Plan Procedure

The sampling plan was produced based on a stratified sampling approach across the proposed MOWF array area with micrositing of sampling stations informed by a detailed review and interpretation of the outputs of the 2021 geophysical campaign and consideration for all surface, subsurface and subsea hazards and their respective exclusion / buffer zones.

The following components, provided by the client Floatation Energy, were assessed in the development of the sampling plan:

- 2021 geophysical campaign processed multibeam echosounder (MBES) bathymetry and side scan sonar (SSS) imagery in mosaiced geotiff format (Figure 2);
- 2021 geophysical campaign processed magnetometer and SSS feature analysis to identify potential subsea hazards and Unexploded Ordnance (UXO) (Figure 3);
- Interpreted seabed classification from 2021 geophysical campaign (Figure 3);
- All available GIS shapefiles and rasters in ESRI format including: scoping boundaries and design of the Wind Turbine Generator (WTG) locations for the array, planned and existing infrastructure to include all oil and gas surface and subsurface infrastructure within the MOWF boundary or within close proximity to it; the latest relevant Marine Protected Area (MPA) boundaries, admiralty charts for the survey area (if available);
- All previous survey and/or technical reports available for the area.

The sampling plan consists of two elements: DDC and grab sampling locations, and DDC Transects. Details on each is provided in Sections 4.3 and 4.4 below. A detailed sampling plan is provided in Appendix 1 and sampling plan shapefiles are provided in Appendix 2.

An overview of the proposed sampling stations is also presented spatially in Figure 4 and Figure 5.

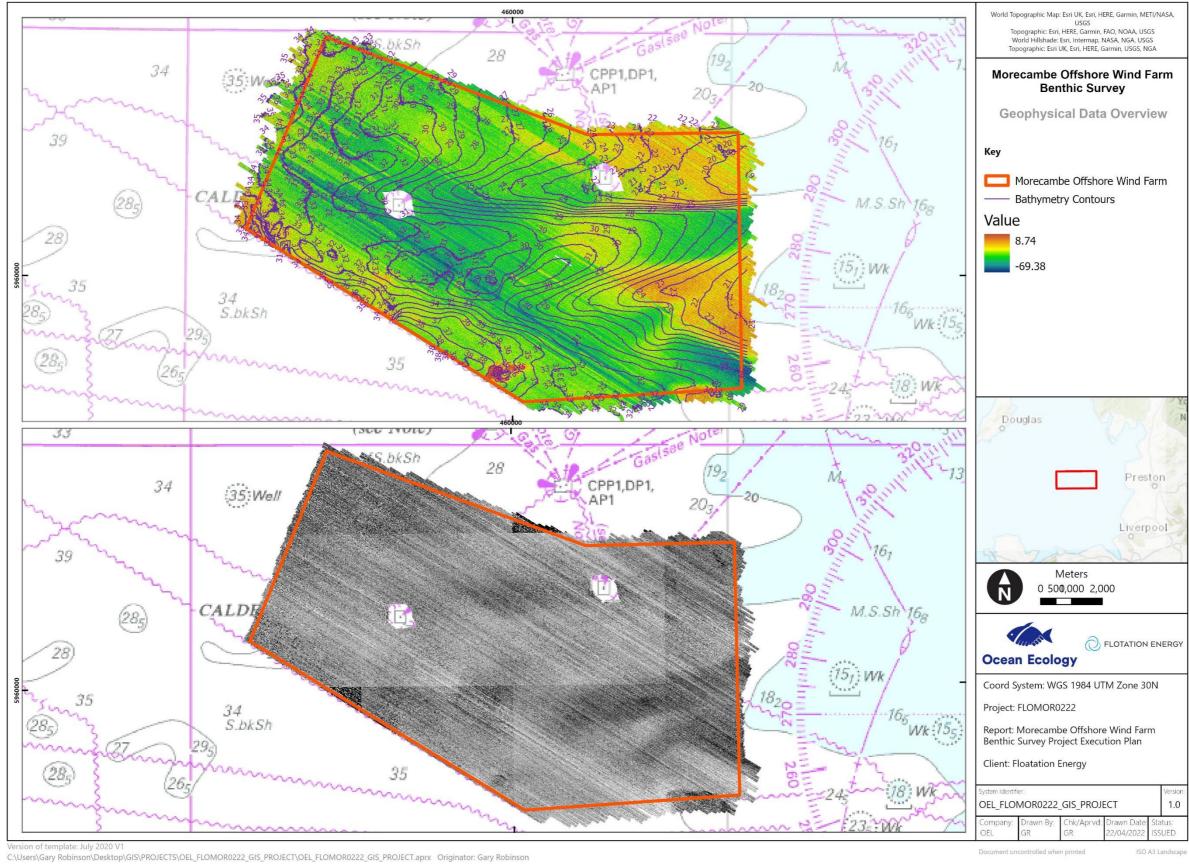
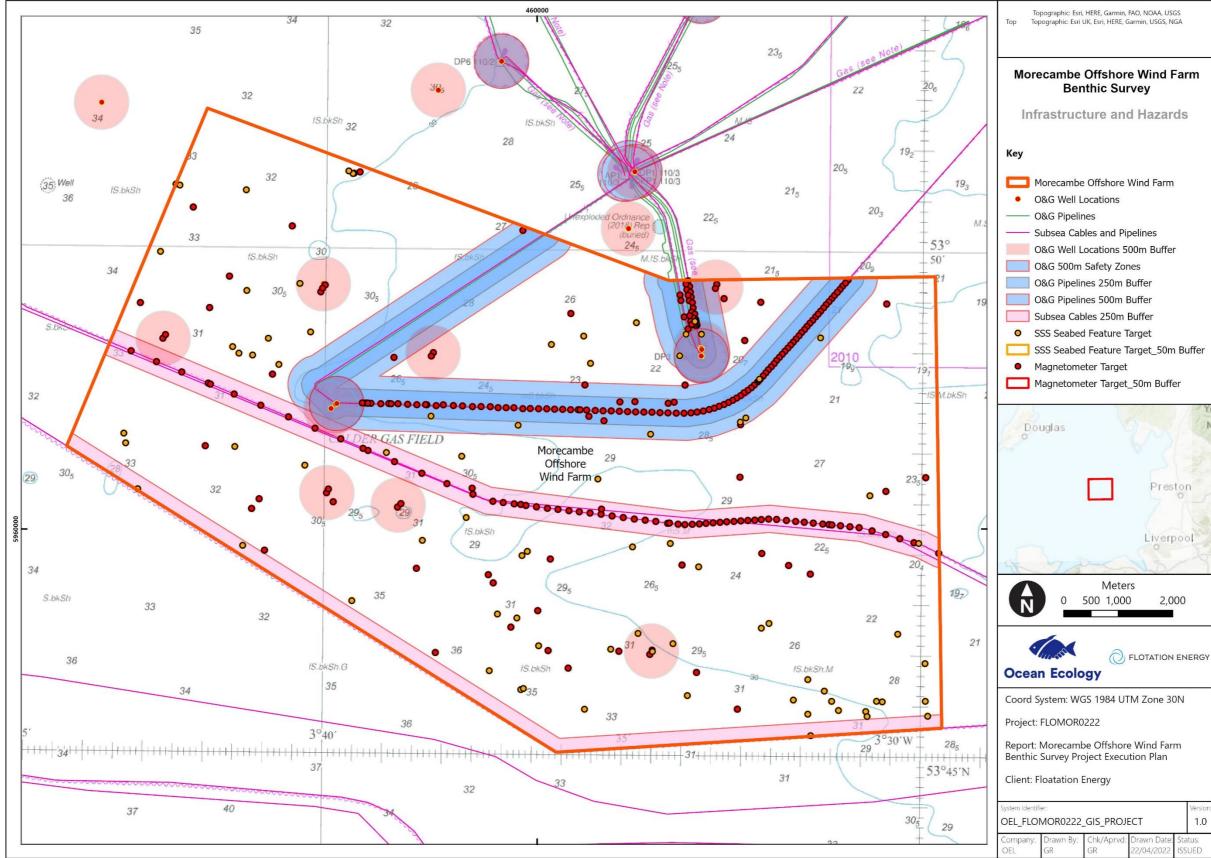
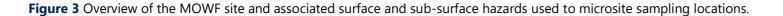




Figure 2 Overview of the MOWF site, results of 2021 geophysical survey campaign (MBES and SSS) used to inform spatial distribution of sampling locations and identify features of interest for investigation with DDC Transects.

Version of template: July 2020 V1 C:\Users\Gary Robinson\Desktop\GIS\PROJECTS\OEL_FLOMOR0222_GIS_PROJECT\OEL_FLOMOR0222_GIS_PROJECT.aprx Originator: Gary Robinson

OEL

ISO A3 Landscape

4.3. Drop Down Camera and Grab Locations

There are up to 50 stations to be sampled with a 0.1 m^2 grab sampler with prior investigation by DDC across the MOWF array area.

The sampling plan was developed to ensure sampling is representative of the varying depths and habitats across the array area in a stratified design whilst also considering the surface and subsurface infrastructures and hazards, design WTG locations and any other notable features identified from the geophysical data review (e.g., areas of seabed scouring and trawl marks).

The DDC investigation prior to grab sampling is to provide additional information on the sediment / substrate surface and to determine suitability to collect grab samples (i.e., confirm the absence of subsea hazards and protected habitats not identified during the geophysical data review).

MBES and SSS was reviewed simultaneously to microsite samples around a stratified grid which was initially overlain on the MOWF array area. SSS and MBES was reviewed manually to identify areas of differing sediment type and seabed elevation. Sediment / substrate type was inferred from SSS based on the reflectivity (coarser sediments providing showing greater reflectivity) and seabed elevation was determined by review of MBES which presents water depth. A representative number of stations was attributed to each of the main Broadscale Habitats (BSH) (Table 1) to ensure coverage of the array area was proportional to the dominant BSH present whilst also considering adequate spatial coverage. Sample locations were further microsited to consider contaminant sampling which was predominantly focused on areas of finer sediment and in proximity to infrastructure which are likely to represent areas of higher contaminant levels.

An overview of the distribution of grab samples and contaminant stations by predicted BSH is provided below in Table 1.

Predicted BSH	No. of Grab Locations	No. of Contaminant Samples
A5.1 - Sublittoral Coarse Sediment	12	4
A5.2 - Sublittoral Sand	38	16
A5.2 - Sublittoral Sand / A5.1 - Sublittoral Coarse Sediment	1	1

Table 1 Overview of proposed grab locations by predicted Broad Scale Habitat (BSH) and contaminant samples to be sampled across the MOWF array area.

Proposed sampling plan for grab sampling is presented visually in Figure 4 and detailed with rationale for each sample location in Appendix 1 – Tab 1: V02 Sampling Plan – DDC & GRAB.

4.3.1. Approach

Sampling will be conducted using OEL's $0.1m^2$ Day grab and sediment samples will be collected within 20 m of the target sampling location. Single grab samples will be collected at each station to collect approximately 10L of sediment. Where a suitable sample cannot be

collected after three attempts within a 20 m radius of the target location, the sample location will be moved by up to 50 m away. Should none of these attempts be successful, the largest of the three samples should be taken and the volume noted.

Detailed field methods are provided in Section 5.

4.4. Drop Down Camera Transects

There are three targeted transects identified to be sampled with DDC. The main objective of the monitoring focused on characterising any features of interest identified in the geophysical review and assessing for the presence of biogenic/geogenic reef habitats within the MOWF array.

A full interrogation of available geophysical data was undertaken by an experienced ecologist to identify and microsite for reef features or areas of interest that required the collection of additional data (e.g., to better ground truth the geophysical data or aid in the delineation of boundaries between sediment / substrate type). Acoustic data was assessed for any topographically complex area of seabed in the MBES and for any hard return or areas of mottled returns in the SSS data as well as for any distinctness against the surrounding seabed to delineate potential boundaries in reef structures.

Transects have been positioned to ensure they intersect the boundaries of any feature identified to aid in the identification of reef features and delineate the extent of such features. Transects range from 150-300 m in length depending on the feature targeted.

TR01 targets an elevated reef-like feature, distinct from the surrounding seabed, in the southeast corner of the site. TR02 targets an area of pronounced scouring within coarse sediment whereby the SSS signature is distinct from the surrounding seabed in the northeast corner of the site. TR03 targets an area of sandy sediments with narrow scour marks aligned to the prevailing current.

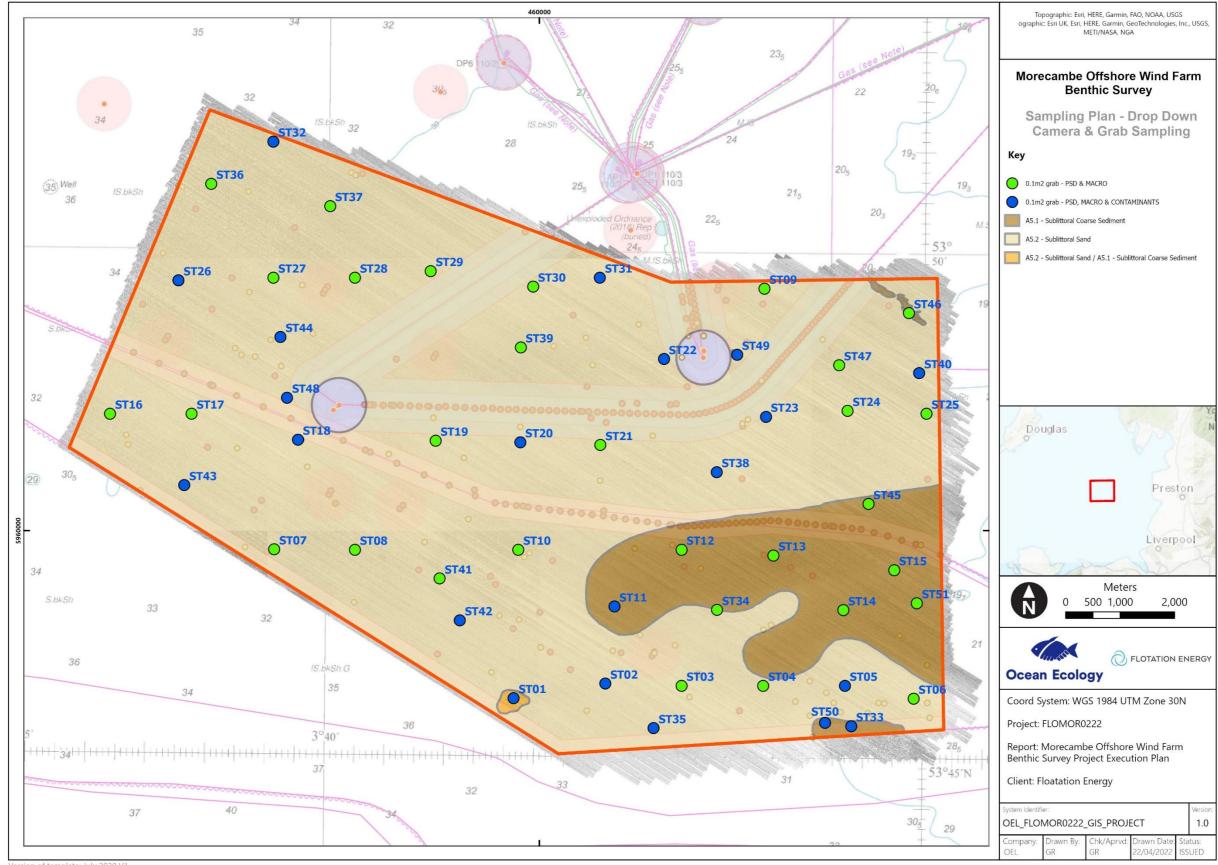
An overview of the proposed DDC Transects by predicted BSH is provided below in Table 2.

Table 2 Overview of proposed DDC Transects by predicted Broad Scale Habitat (BSH) and contaminant samples to be sampled across the MOWF array area.

Predicted BSH	No. of DDC Transects
A5.1 - Sublittoral Coarse Sediment	2
A5.2 - Sublittoral Sand	1
A5.2 - Sublittoral Sand / A5.1 - Sublittoral Coarse Sediment	1

The complete DDC Transect sampling plan is presented visually in Figure 5 and detailed with rationale for each transect location in Appendix 1 – Tab 2: V02 Sampling Plan - Transects.

4.4.1. Approach


Seabed imagery (simultaneous video and stills) will be acquired along the DDC transects using OEL's Rayfin PLE Camera System with freshwater housing to collect 4K video and high-resolution (up to 21 megapixels (MP)) still images. The transects have been orientated to intersect the features of interest and are of length sufficient to delineate the feature boundaries whilst also considering the prevailing currents in the area which run east to west.

Along each DDC transect, a 'bed-hopping' approach will be employed to ensure representative imagery is collected along the full transect with still images to be taken every 5-10 m along with continuous video recording.

Detailed field methods are provided in Section 5.

4.5. Timing

The survey will be undertaken during May 2022 following the sign off of this PEP by Floatation Energy.

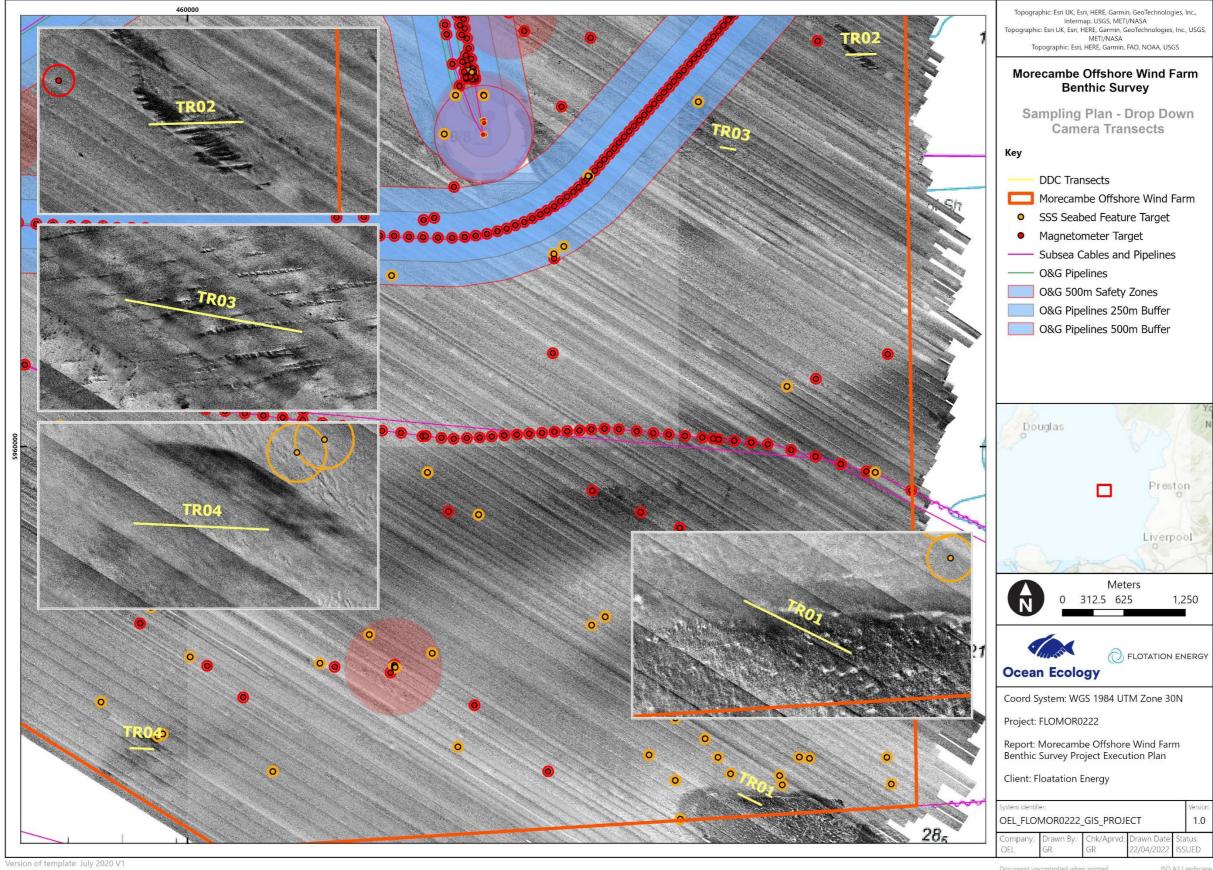

Version of template: July 2020 V1 C:\Users\Gary Robinson\Desktop\GIS\PROJECTS\OEL_FLOMOR0222_GIS_PROJECT.oeL_FLOMOR0222_GIS_PROJECT.aprx Originator: Gary Robinson

Figure 4 Locations of MOWF DDC and grab sampling stations.

OEL I

ment uncontrolled when printed

ISO A3 Landscape

C:\Users\Gary Robinson\Desktop\GIS\PROJECTS\OEL_FLOMOR0222_GIS_PROJECT\OEL_FLOMOR0222_GIS_PROJECT.aprx Originator: Gary Robinson

OEL

ISO A3 Landscape

5. Survey Methods

5.1. Survey Vessel

The Marine and Coastal Agency (MCA) Category 2, 10 m dedicated survey vessel *Seren Las*. (Plate 1), operated by OEL, will undertake the benthic surveys, operating out of either Fleetwood or Barrow-in-Furness. *Seren Las* has been specifically designed for the collection of benthic grab samples and deployment of DDC and due to its shallow draft, it is an ideal platform for shallow subtidal surveying.

Vessel Name	Seren Las
Call Sign	MDAH2
MMSI	235087047
Mobilisation Port	TBC – one of Fleetwood or Barrow-in-Furness
Length	10.4 m
Beam	3.5 m
Draft	1.5 m

Table 3 Vessel details.

Plate 1 OEL's dedicated survey vessel, 'Seren Las'.

5.2. Equipment

 Table 4 Equipment list to be utilised onboard the Seren Las.

Equipment	Model
Camera System	OEL freshwater housing with HD video and high-resolution stills camera
dGPS	Hemisphere V104s GPS Compass
Gyro Compass	Hemisphere V104s GPS Compass
USBL	Easytrak Nexus 2 Lite
Navigation Software	EIVA NaviPac V4.5

5.3. Seabed Imagery Collection

5.3.1. Drop-Down Video System

Seabed imagery (simultaneous video and stills) will be acquired along the DDC transects using OEL's Rayfin PLE Camera System to collect 4K video and high-resolution (up to 21 megapixels (MP)) still images. The camera system (Plate 2) consists of a SubC Imaging Rayfin PLE camera, seabed frame equipped with freshwater housing (Jones et al. 2020), two LED strip lights, two 5 kW green dot lasers (set to 10 cm distance for scale), a 300 m umbilical and topside computer. The camera is powered with the use of an Uninterruptable Power Supply (UPS) to ensure no damage is caused should the vessel lose power or cause a power surge. The freshwater housing is height and angle adjustable providing a variety of options for view, lighting, and focal length to maximise data quality with respect to prevailing conditions (e.g., high turbidity).

Videos will be digitally overlaid retrospectively with information including project, date, time and Differential Global Positioning System (dGPS) position and recorded in a digital format.

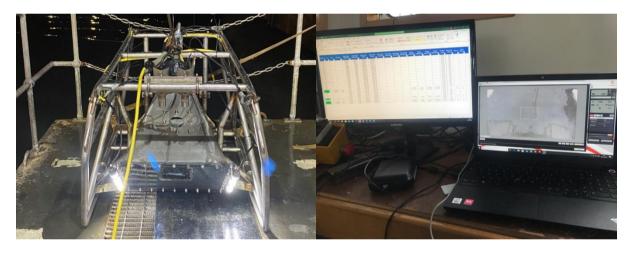


Plate 2 Left: OEL freshwater housing camera system. Right: The camera system topside setup.

All DDC stations (co-located with grab sample locations for prior investigation) and DDC transects will be sampled in line with the JNCC epibiota remote monitoring operational guidelines (Hitchin et al. 2015). Along each DDC transect, a 'bed-hopping' approach will be employed to ensure representative imagery is collected along the full transect with still images to be taken every 5-10 m along with continuous video recording. All footage will undergo a preliminary review *in situ* by the OEL's marine ecologists.

The camera system will be deployed as follows:

- Vessel approach target location and alerts deck personnel to prepare camera and umbilical.
- Sea fastening on camera frame to be released to allow deployment from the deck.
- Umbilical released overboard with sufficient length paid out to cover water depth.

- Camera to be raised and lowered into the water column to within 5 m of the seabed.
- Ecologist switches on video recording and the camera lowered until gently landing on the seabed at which point a positional fix will be taken.
- The ecologist waits for any suspended sediments in the field of view to disperse before taking an image and confirming with the skipper to move on.
- The camera will then be raised from the seabed and moved along the transect 5-10 m. Where possible the seabed will be maintained in view at all times.
- Following the capture of the final image, the camera will be lifted, video recording stopped, and the camera retrieved to the surface.
- The winch operator will then take the tension on the winch cable whilst the ecologist ensures the camera umbilical is free for recovery.
- Once the camera was on the surface, the vessel will be positioned to minimise pitch and roll (e.g., into wind/tide).
- The vessel skipper will then confirm that sea conditions are suitable for retrieval and the camera system recovered aboard.
- The camera frame will then be lowered onto the deck and the tension released.

5.4. Benthic Grab Sampling

Sampling will be conducted using OEL's 0.1m² Day grab and samples will be collected within 20 m of the target sampling location. Single grab samples will be collected at each station to collect approximately 10L of sediment from each grab from which a sub-sample of the sediment (a volume of 500 – 750 ml dependent on the nature of the sediment) will be removed for characterisation of the physical nature of the substrate (via PSD analysis). From a subset of 20 stations, contaminant sub-samples will be collected for analysis of various determinants including hydrocarbons and metals.

OEL's 0.1m² Day Grab is ideal for sampling medium to fine sediments, benthic macrofauna and for when contaminant sampling is required and is crucial to obtain undisturbed sediment surface samples. Upon contact with the seabed, the tension from the wire is released which causes the sampling bucket to pivot through 90°, pushing seabed sediment into the bucket which closes, forming a tight seal to avoid sediment/sample loss.

A 0.1m² mini Hamon Grab will be available as backup to sample coarser sediments should there be issues with recovery using the Day Grab. The Hamon Grab is designed to sample coarse sands and gravels.

The grab will be deployed from the A-frame on the aft deck of the Seren Las.

5.4.1. Sample Collection

To ensure consistency in sampling, grab samples will be screened by the lead marine ecologist and considered unacceptable if:

- The sample is less than 5L. i.e., the sample represents less than approx. a half of the 10L capacity of the grab used.
- The jaws fail to close completely or are jammed open by an obstruction, allowing fines to pass through (washout or partial washout).
- The sample is taken at an unacceptable distance from the target location (beyond 20 m).
- There is obvious contamination of the sample from survey equipment, paint chips etc.

Where a suitable sample cannot be collected after three attempts within a 20 m radius of the target location, the sample location will be moved by up to 50 m away. Where samples of less than 5L are continually achieved, these samples will be assessed on site to establish if the sample volume is acceptable to allow subsequent analysis. No pooling of samples will take place.

5.4.2. Grab Sample Processing (PSD & MACRO)

Initial grab sample processing will be undertaken onboard the *Seren Las* in line with the following methodology:

- Initial visual assessment of sample size and acceptability made.
- Photograph of the sample with station details and scale bar to be taken.
- Sub-sample removed for PSD analysis and transferred to a labelled tray.
- Remaining sample emptied onto 1.0 mm sieve net laid over 4.0 mm sieve table and washed through using gentle rinsing with seawater hose.
- Remaining sample for faunal sorting and identification backwashed into a suitable sized sample container and diluted 10% formalin solution added to fix the sample prior to laboratory analysis.
- Sample containers will be clearly labelled internally and externally with date, sample ID and project name.

Detailed field notes will be taken including station number, fix number, number of attempts, sample volume, sediment type, conspicuous fauna, any sign of protected features and water depth.

5.4.3. Grab Sample Processing (CONTAMINANTS)

A separate grab will be taken at a subset of up to 20 sample stations. Detailed notes will be taken of visible sediment conditions and seabed features, obvious fauna and habitat-related features whilst in the field, prior to detailed analysis at the MMO validated laboratories,

SOCOTEC (contaminant analyses) and OEL (PSD). Sample processing will be undertaken onboard the survey vessel using the following methodology:

- Inspection cover lifted and general assessment of sample size and acceptability made ensuring sediment surface is undisturbed and no obvious sign of contamination. NB ensure no grease, oils or lubes enter the sample once the inspection cover is open.
- pH / Redox probe placed into sediment sample and allowed to settle for 2 minutes before taking readings in field logs.
- Sediment samples will be sub-sampled and decanted into the recommended sample containers provided by SOCOTEC, the contaminant laboratory specialists for the required analyses as below:
 - Moisture Content
 - Total organic matter (by loss on ignition)
 - Total Organic Carbon (TOC)
 - Total content and the content of the labile form of heavy metals (Pb, Cu, Zn, Ni, Cd, Cr, As, Hg);
 - Organotins (DBT, TBT)
 - Polycyclic aromatic hydrocarbons (PAHs) Acenaphthene, Acenaphthylene, Anthracene, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[ghi]perylene, Benzo[e]pyrene, Benzo[k]fluoranthene, Chrysene, Dibenzo[a,h]anthracene, Fluoranthene, Fluorene, Indeno[123,cd]pyrene, Naphthalene, Perylene, Phenanthrene, Pyrene
 - Total Hydrocarbon Content (THC)
 - Polychlorinated biphenyls (PCBs 25 including the ICES 7); -

All samples taken for physico-chemical analysis will be stored frozen at -20°C in amber glass containers, up to a maximum of 3 months¹. These containers will be acid cleaned and solvent-rinsed before use, sealed with a foil liner and tightened appropriately to avoid potential loss of determinands, contamination of samples, or both. A temperature of 25°C will not be exceeded at any stage of storage or transportation.

Two replicates (A and B Reps) will be collected at each contaminant sampling location. The B replicates will be stored frozen in line with MMO requirements in case of requirement for reanalysis or in the event of any A replicates becoming compromised during transit / storage prior to analysis.

5.5. Navigation Equipment

The vessel is equipped with a Hemisphere V104s Global Positioning System (GPS) compass system. The Hemisphere V104s's internal GPS receiver automatically searches for and uses a minimum of 4 GPS satellites and manages the navigation information required for position to

¹ Samples will be delivered to SOCOTEC immediately for analysis and processed within 30 days of receipt.

within 3 m (95% accuracy). Since there is some error in the GPS data calculations, the V104s also automatically tracks a Satellite-Based Augmentation System (SBAS) differential correction to improve its position accuracy to better than 1.0 m 95%.

The V104s has an integrated gyro and two tilt sensors to provide an accurate heading for the navigation software.

5.6. Subsea Positioning

The vessel will be fitted with an Easytrak Nexus 2 Lite Ultra-Short Baseline (USBL) system and 1329A Omni-directional +/-90° Micro Beacons for subsea positioning of the camera and grab. The Easytrak Nexus 2 Lite is an advanced USBL positioning and tracking system that determines the position of dynamic subsea targets through the transmission and reception of acoustic signals between the submerged transceiver and a target beacon.

5.6.1. Positional Checks

The GPS has an internal precision calculation to give a graphical representation of horizontal accuracy and displays numerical precision in easting and northing. To verify the reference systems are operating correctly, transformation parameters and a test point shall be agreed upon with the Client prior to the commencement of operations. Vessel heading will be checked in reference to a known point for accuracy on mobilisation.

5.7. Navigation Software

A vessel-based positioning system will be employed utilizing EIVA NaviPac V4.2 software to ensure the accurate positioning of the vessel and survey equipment via the USBL system. A navigation screen, displaying EIVA Helmsman Display will be provided at the helm position of the vessel for the Officer on Watch as well as for the ecologist/surveyor in the wheelhouse.

5.8. Project Parameters

5.8.1. Horizontal Reference systems

Table 5 Project horizontal geodetic parameters.

Parameter	Value				
Datum	World Geodetic System 1984				
Ellipsoid	World Geodetic System 1984				
Spheroid	World Geodetic System 1984				
Semi Major Axis (m)	6378137.0				
Semi Minor Axis (m)	6356752.314245719				
Inverse Flattening (1/f)	298.257223563				
Angular unit	Degree				

Table 6 Project horizontal projection parameters.

Parameter	Value				
Projection	Universal Transverse Mercator (UTM) Zone 30N				
Longitude at Central Meridian	003° 00.000000′ E				

Latitude of Origin	000° 00.000000′ N				
False Northing and Easting (m)	0; 500,000				
Scale Factor	0.9996				
Linear Unit	Metre				
Time Datum	Universal Time Coordinated (UTC)				

5.8.2. Unit Format and Conversions

The following units will be used throughout this project and are expressed using the following conventions.

Unit Formats and Conventions						
Coordinates	Latitude	N DD°MM.mmmmmm' to 6 decimal places.				
Geographical Coordinates	Longitude	E/W DD °MM.mmmmmm' to 6 decimal places.				
Grid Coordinates	Meters in the f Easting Northing	ollowing format: EEE EEE.eee m to 3 decimal places. NNN NNN.nnn m to 3 decimal places.				
Linear distances	Meters to 1 decimal places.					
Kilometre Point (KP) distances	Kilometres to 2 decimal places.					
Offset measurement sign conventions	Meters in the following format: 'Y' is positive forward 'X' is positive to starboard 'Z' values are positives upwards from the waterline					
Time	Local unless otherwise stated.					

 Table 7 Project unit format and convention details.

6. Post-Survey Analysis & Reporting

6.1. Benthic Grab Sample Analysis

All elutriation, extraction, identification, and enumeration will be undertaken at OEL's NE Atlantic Marine Biological Analytical Quality Control (NMBAQC) scheme participating laboratory in line with the NMBAQC Processing Requirement Protocol (Worsfold & Hall 2010). All processing information and macrobenthic records will be recorded using OEL's cloud-based data management application <u>ABACUS</u> that employs MEDIN validated, controlled vocabularies ensuring all sample information, nomenclature, qualifiers, and metadata are recorded in line with international data standards.

For each macrobenthic sample, the excess formalin will be drained off into a labelled container over a 1 mm mesh sieve in a well-ventilated area. The samples will then be re-sieved over a 1 mm mesh sieve to remove all remaining fine sediment and fixative. The low-density fauna will then be separated by elutriation with freshwater, poured over a 1 mm mesh sieve, transferred into a Nalgene and preserved in 70 % Industrial Denatured Alcohol (IDA). The remaining sediment from each sample will subsequently be separated into 1 mm, 2 mm and 4 mm fractions and sorted under a stereomicroscope to extract any remaining fauna (e.g., high-density bivalves not 'floated' off during elutriation).

All fauna present will be identified to species level, where possible, and enumerated by trained benthic taxonomists using the most up to date taxonomic literature and checks against existing reference collections. Nomenclature will utilise the live link within ABACUS to the <u>WoRMS</u> web services to ensure the most up to date taxonomic classifications are recorded. Colonial fauna (e.g., hydroids and bryozoans) will be identified to species level where possible and recorded as present (P). For subsequent data analysis, taxa recorded as P will be given the numerical value of 1. A full reference collection will be retained including at least one example specimen of each taxon.

Biomass will be measured as blotted wet weight in grams to at least 4 decimal places for all countable taxa (i.e., at species level where possible). As a standard, the conventional conversion factors as defined by Eleftheriou & Basford (1989) will be applied to biomass data to provide equivalent dry weight biomass (Ash Free Dry Weight).

The conversion factors applied are as follows:

- Annelida = 15.5%
- Crustacea = 22.5%
- Mollusca = 8.5%
- Echinodermata = 8.0%
- Miscellaneous = 15.5%

In addition to OEL's standard quality control procedures, the macrobenthic sample processing will be subject to external quality control checks by an independent, competent benthic

laboratory participant in the NMBAQC scheme as per the RSMP protocol(Ware et al. 2011, Cooper & Mason 2019).

6.2. Particle Size Distribution (PSD) Analysis

PSD analysis of the sediment samples will be undertaken by in-house laboratory technicians at OEL's NMBAQC participating laboratory in line with NMBAQC best practice guidance (Mason 2016).

Frozen sediment samples will first be transferred to a drying oven and thawed at 80°C for at least 6 hours before visual assessment of sediment type. Before any further processing (e.g., sieving or sub-sample removal), samples will be mixed thoroughly with a spatula and all conspicuous fauna (>1 mm) which appeared to have been alive at the time of sampling removed from the sample. A representative sub-sample of the whole sample will then be removed for laser diffraction analysis before the remaining sample screened over a 1 mm sieve to sort coarse and fine fractions. The >1 mm fraction will then be returned to a drying oven and dried at 80°C for at least 24 hours before dry sieving. Once dry, the sediment sample will be run through a series of Endecott BS 410 test sieves (nested at 0.5 φ intervals) using a Retsch AS200 sieve shaker to fractionate the samples into particle size classes. The dry sieve mesh apertures to be used are given in Table 8.

Sieve aperture (mm)												
63	45	32	22.5	16	11.2	8	5.6	4	2.8	2	1.4	1

Table 8 Sieve series employed for PSD analysis by dry sieving.

The sample will then be transferred onto the coarsest sieve at the top of the sieve stack and shaken for a standardised period of 20 minutes. The sieve stack will be checked to ensure the components of the sample had been fractioned as far down the sieve stack as their diameter would allow. A further 10 minutes of shaking may be undertaken if there is evidence that particles had not been properly sorted.

The sub-sample for laser diffraction will be first screened over a 1 mm sieve and the fine fraction residue (<1 mm sediments) transferred to a suitable container and allowed to settle for 24 hours before excess water syphoned from above the sediment surface until a paste texture is achieved. The fine fraction will then be analysed by laser diffraction using a Beckman Coulter LS13 320. For silty sediments, ultrasound will be used to agitate particles and prevent aggregation of fines.

The dry sieve and laser data will then be merged for each sample with the results expressed as a percentage of the whole sample. Once data is merged, PSD statistics and sediment classifications will be generated from the percentages of the sediment determined for each sediment fraction using Gradistat v8 software.

Sediment descriptions will be defined by their size class based on the Wentworth classification system (Wentworth 1922) (Table 9). Statistics such as mean and median grain size, sorting coefficient, skewness and bulk sediment classes (percentage silt, sand and gravel) will also be derived following the Folk classification (Folk 1954).

Wentworth Scale	Phi Units (φ)	Sediment Types
>64 mm	<-6	Cobble and boulders
32 – 64 mm	-5 to -6	Pebble
16 – 32 mm	-4 to -5	Pebble
8 – 16 mm	-3 to -4	Pebble
4 - 8 mm	-3 to -2	Pebble
2 - 4 mm	-2 to -1	Granule
1 - 2 mm	-1 to 0	Very coarse sand
0.5 - 1 mm	0 – 1	Coarse sand
250 - 500 μm	1 – 2	Medium sand
125 - 250 μm	2 – 3	Fine sand
63 - 125 μm	3 – 4	Very fine sand
31.25 – 63 µm	4 – 5	Very coarse silt
15.63 – 31.25 μm	5 – 6	Coarse silt
7.813 – 15.63 μm	6 – 7	Medium silt
3.91 – 7.81 µm	7 – 8	Fine silt
1.95 – 3.91 µm	8 – 9	Very fine silt
<1.95 µm	<9	Clay

Table 9 The classification used for defining sediment type based on the WentworthClassification System (Wentworth 1922).

In addition to OEL's standard quality control procedures, the PSD sample processing will be subject to external quality control checks by an independent, competent benthic laboratory participant in the NMBAQC scheme as per the RSMP protocol (Ware et al. 2011, Cooper & Mason 2019).

6.3. Seabed Imagery Analysis

All seabed imagery analysis collected by DDC will be undertaken in consideration of the latest NMBAQC/JNCC Epibiota Quality Assurance Framework (QAF) guidance and identification protocols available on the NMBAQC website. Final datasets will be presented using the latest NMBAQC/JNCC epibiota monitoring proformas available for stills and video footage and will be quality assured using the Quality Assurance Framework (QAF) form check and comparison tools.

OEL

The seabed imagery analysis Bio-Image Indexing and Graphical Labelling Environment (<u>BIIGLE</u>) annotation platform (Langenkämper et al. 2017) and Analysis of still images will be undertaken in two stages. The first stage, "Tier 1", will consist of labels that refer to the whole image being assigned providing appropriate metadata for the image including European Nature Information System (EUNIS) habitat classifications assigned in line with Parry (2019). The second stage, "Tier 2", will be used for enumerating epibiotal abundance and cover within each image and to assign percentage cover of reef types.

A full reef habitat assessment (HA) will be conducted on all DDC imagery to determine whether habitats meet the definitions of Annex I reef habitats as detailed in (Table 10 and Table 11). The latest JNCC guidance on the characterisation of 'low resemblance' Annex I stony reef will also be considered (Golding et al. 2020).

The annotation label tree to be used during analysis will have major headings for each of the reef types. Under each reef type, labels will be assigned for each of the categories required to determine whether Annex I reef habitat is present (Table 10 and Table 11).

Characteristic		'Reefines	s'					
Characteristic	Not a Reef	Low	Medium	High				
Composition (proportion of boulders/cobbles (>64 mm))	<10 %	10-40 % matrix supported	40-95 %	>95 % clast- supported				
Elevation	Flat seabed	<64 mm	64 mm - 5 m	>5 m				
Extent	<25 m ²	>25 m ²						
Biota	Dominated by infaunal species		omposed of					

Table 10 Characteristics of stony reef (Irving 2009).

Table 11 Characteristics of Sabellaria spinulosa reef (Gubbay 2007).

Characteristic		1	Reefiness'	
Characteristic	Not a Reef	Low	Medium	High
Elevation (cm)	< 2	2 - 5	5 – 10	> 10
Extent (m ²)	< 25	25 – 10,000	10,000 - 1,000,000	> 1,000,000
Patchiness (% Cover)	< 10	10 - 20	20 – 30	> 30

6.3.1. Tier 1 Analysis

The first stage, "Tier 1", will consist of assigning labels that referred to the whole image, providing appropriate metadata for the image. Metadata "Image Labels" include:

- Broadscale Habitat (BSH) type.
- Substrate type (and percentage cover in 10% intervals).
- Bedforms present.

- The presence of any Annex I habitats, Features of Conservation Importance (FOCI), Habitats of Conservation Importance (HOCI) and Invasive Non-Native Species (INNS).
- The presence of any visible impacts or other modifiers (such as discarded fishing gear or marine litter (as per the Marine Strategy Framework Directive (MSFD) categories), visible physical damage to the seabed, evidence of strong currents, non-native species, etc.).
- Image quality categories (including "Not Analysable" category).

Depending on the presence of reef, this will also include:

- Extent: As it is not possible to fully determine the extent of reef habitats from a single image alone this label will be used to identify areas that are highly unlikely to constitute reef habitats. An example is an image that shows a large boulder being preceded and succeeded by images of unconsolidated sandy sediments.
- Biota: Labels assigned to determine whether epifauna dominate the biological community observed.
- Elevation: Labels assigned depending on reef type. Laser points will be used to assist in the assignment of categories.

6.3.2. Tier 2 Analysis

The second stage, "Tier 2", will be used to assess epibiotal abundance data as "annotations" within each image for all visible flora and fauna. This will be undertaken as follows:

- Using the BIIGLE Annotation Platform, (detailed below) enumeration of all visible taxa will be undertaken using points for enumerable "count" taxa and polygons for ground-covering taxa; to enable calculation of percentage cover for these taxa.
- Where an individual of a "count" taxon overlay a ground-cover taxon, then this individual is still counted (i.e., a point annotation will be added for the count taxa over the polygon of the ground-cover taxon).
- Identification of any invasive non-native species (INNS) and species non-native to UK waters. Information will also be included on species non-native to the local habitat types (e.g. hard-substrate specialists in a wider sedimentary habitat).

The substratum observed in each still image will be recorded as a percentage cover of CATAMI (Althaus et al. 2015) substratum types where possible. Determination of sediment type (such as coarse, mixed, sand etc.) will be facilitated using the adapted Folk sediment trigon (Long 2006) incorporated into a sediment category correlation table. Percentage cover of the different substrate types will be used to determine and assign EUNIS codes and BSH.

6.4. Reporting

6.4.1. Field Report

Within five working days of demobilisation of the survey, a field report will be issued by OEL to Floatation Energy providing a summary of the work completed. This report will summarise sampling progress, any problems encountered and provide final field logs and sample images.

6.4.2. Technical Report

All of the raw data derived from the characterisation survey will undergo detailed analysis and interpretation in line with Phase III of NE's "Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards" (Natural England 2021b). Following the completion of all data analysis, OEL will provide a detailed technical report to provide a description of the baseline environment, including a narrative of the seabed type across the project area, the range of habitats and biotopes present and the presence of any habitats/species of conservation importance. Data will be collated using Excel spreadsheets conforming to the relevant Marine Environmental Data and Information Network (MEDIN) data guidelines and with all site locations recorded. All electronic data will be provided in addition to the report. An outline contents table for the report is set out in Table 12.

Section	Description
	Project background
Introduction	Existing environment
	Aims and objectives
	 Sampling design and rationale including methods of geophysical
	interpretation
	Field methods
Methods	 Seabed imagery analysis methods including Annex I assessment
Methous	methodology
	Benthic grab sampling analysis methods
	Statistical analysis
	GIS Habitat Mapping Procedures
	Summary of progress
	Sediment analysis and mapping
Results	Macrobenthic analysis and mapping
Results	 Seabed imagery analysis and mapping (with Annex I assessment)
	Mapping of benthic habitats
	 Assessment of any Annex I habitats encountered
	Contextualisation of results
Discussion	Limitations of the study
	Conclusion
References	List of references used

Table 12 Outline of the offshore benthic baseline technical report contents.

	Sampling logs
	Data matrices
Appendices	Benthic grab sample image examples
	Seabed imagery examples
	GIS data package

7. References

- Althaus F, Hill N, Ferrari R, Edwards L, Przeslawski R, Schönberg CHL, Stuart-Smith R, Barrett N, Edgar G, Colquhoun J, Tran M, Jordan A, Rees T, Gowlett-Holmes K (2015) A Standardised Vocabulary for Identifying Benthic Biota and Substrata from Underwater Imagery: The CATAMI Classification Scheme. PLoS One 10.
- Cooper K, Mason C (2019) Regional Seabed Monitoring Programme (RSMP) Protocal for Sample Collection and Processing. Version 7.0.
- Eleftheriou A, Basford D. (1989) The macrobenthic infauna of the offshore northern North Sea. J Mar Biol Assoc 69:123–143.
- Folk R. (1954) The distribution between grain size and mineral composition in sedimentary rock nomenclature. J Geol 62:344–359.
- Golding N, Albrecht J, McBreen F (2020) Refining criteria for defining areas with a 'low resemblance' to Annex I stony reef: Workshop Report.
- Gubbay S (2007) Defining and managing Sabellaria spinulosa reefs: Report of an inter-agency 1-2 May, 2007.
- Hitchin R, Turner, Verling (2015) Epibiota Remote Monitoring from Digital Imagery: Operational Guidelines.
- Irving R (2009) The identification of the main characteristics of stony reef habitats under the Habitats Directive. JNCC Rep No 432:44.
- Jones RE, Unsworth RKF, Hawes J, Griffin RA (2020) Improving benthic biodiversity assessments in turbid aquatic environments. Aquat Conserv Mar Freshw Ecosyst:aqc.3509.
- Langenkämper D, Zurowietz M, Schoening T, Nattkemper TW (2017) BIIGLE 2.0 Browsing and Annotating Large Marine Image Collections. Front Mar Sci 4:1–10.
- Long D (2006) BGS detailed explanation of seabed sediment modified folk classification. Folk.
- Mason C (2016) NMBAQC's Best Practice Guidance Particle Size Analysis (PSA) for Supporting Biological Analysis.
- Natural England (2021a) Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards - Phase I: Expectations for pre-application baseline data for designated nature conservation and landscape receptors to support offshore wind application.
- Natural England (2021b) Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards - Phase III: Expectations for data analysis and presentation at examination for offshore wind applications.
- Parry ME V (2019) Guidance on Assigning Benthic Biotopes using EUNIS or the Marine Habitat Classification of Britain and Ireland (Revised 2019).
- Ware SJ, Kenny AJ, Curtis M, Froján CB, Cooper K, Reach I, Bussell J, Service M, Boyd A, Sotheran I, Egerton J, Pearce LSB (2011) Guidelines for the Conduct of Benthic Studies at Marine Aggregate Extraction Sites. Mar Aggreg Levy Sustain Fund 2:80.

Wentworth C. (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392.

Worsfold T, Hall D (2010) Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol.

Appendix II - Methods for the analysis of sediment chemistry

Method	Sample and Fraction Size	Method Summary
Total Organic Carbon (TOC)	Air dried	Carbonate removal and sulphurous acid/combustion at 1600°C/NDIR.
Metals	Air dried	Aqua-regia extraction followed by ICP analysis.
Silver & Tellurium	Air dried	Nitric acid extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Ultra-violet fluorescence spectroscopy
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

Appendix III - Analytical routines

Hierarchical Cluster Analysis & SIMPROF

Cluster analysis is used to establish groups of samples which show multivariate similarity using an agglomerative hierarchical clustering method. When applied to between-sample similarity matrices based on Bray-Curtis similarities (Bray & Curtis, 1957) results can be represented in a dendrogram where samples are displayed on the x-axis and the level of similarity is displayed on the y-axis. Similarity profile permutation (SIMPROF) tests can be undertaken to test for the presence of statistically significant sample groups in a priori unstructured set of samples (Clarke et al. 2008) separated in the dendrogram.

Multidimensional Scaling (MDS)

MDS ordination plots can be used to represent the similarity of samples based on their multivariate structure by arranging them graphically in a multidimensional plot. This plot can be configured to display the sample points in two dimensions and provides a stress value that indicates the degree to which the plot is providing a representative interpretation of the similarity between the samples.

Similarity Percentage (SIMPER)

Using the Bray-Curtis measure of similarity the SIMPER routine identifies the variables primarily providing the discrimination between two observed sample clusters. This analysis breaks down the contribution of each variable to the observed similarity between samples effectively meaning the key characterising variables of identified groups can be identified.

Shade Plots

PRIMER v7 now allows shade plots to be plotted showing simple visual representations of abundance matrices from multivariate species assemblage studies and have been shown to be an effective aid in choosing overall transformation (or other pre-treatment) of quantifiative data (Clarke et al. 2014). Shade plots with linear grey-scale intensity proportional species abundance data can therefore be plotted and species can be clustered using the standard agglomerative method, based on the 'index of association' resemblances computed on species-standardised abundance. Resulting dendograms can be rotated to maximise the seriation statistic p, non-parametrically correlating their resemblances on the distance structure of a linear sequence to present the data in a form where general trends are most easily distinguished.

Appendix IV - Morecambe OWF drop-down camera video survey logs.

Station	Date	Video Start Time (UTC)	Video Length	Video End Time (UTC)	GPS to Camera Time Offset	No. of Videos	No. of Images Per Video	Video File Name	Depth (m)	Camera System	Freshwater Housing Height Setting	Distance Between Laser Points (cm)	FOCI/OSPAR present (excluding reef)	Potential Annex I reef?
ST01											on not sampled due to being	covered by TR04		
ST02	29/05/2022	16:55:45	00:03:51	16:59:36	00:00:03	1	6	FLOMOR0322_ST02_2022_05_29_165543	35.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST03	29/05/2022	17:34:15	00:03:30	17:37:45	00:00:02	1	5	FLOMOR0322_ST03_2022_05_29_173413	34.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST04	01/06/2022	04:20:45	00:04:05	04:24:50	00:00:00	1	8	FLOMOR0322_ST04_2022_06_01_042045	34.0	SubC Rayfin PLE System	Top - Plan View	10	N V	N
ST05 ST06	01/06/2022	05:48:30 06:12:00	00:06:30 00:04:40	05:55:00 06:16:40	00:00:01 00:00:00	1	6	FLOMOR0322_ST05_2022_06_01_054829 FLOMOR0322_ST06_2022_06_01_061200	32.0 30.0	SubC Rayfin PLE System	Top - Plan View	10 10	Y Y	N
ST06 ST07	29/05/2022	14:43:45	00:04:40	14:46:07	00:00:00	1	5	FLOMOR0322_ST06_2022_06_01_061200 FLOMOR0322_ST07_2022_05_29_144344	30.0	SubC Rayfin PLE System SubC Rayfin PLE System	Top - Plan View Top - Plan View	10	N N	N
ST07	29/05/2022	15:03:08	00:02:22	15:06:27	00:00:03	1	6	FLOMOR0322_ST07_2022_05_29_144344	34.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST00	28/05/2022	12:39:47	00:02:52	12:42:39	00:00:04	1	5	FLOMOR0322_ST09_2022_05_28_123943	27.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST10	29/05/2022	15:43:10	00:02:02	15:45:17	00:00:03	1	5	FLOMOR0322_ST10_2022_05_29_154307	32.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST11	29/05/2022	17:59:10	00:02:59	18:02:09	00:00:03	1	5	FLOMOR0322_ST11_2022_05_29_175907	31.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST12	29/05/2022	18:20:30	00:03:58	18:24:28	00:00:02	1	5	FLOMOR0322_ST12_2022_05_29_182028	29.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST13	01/06/2022	07:53:35	00:04:43	07:58:18	00:00:01	1	6	FLOMOR0322_ST13_2022_06_01_075334	25.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST14	01/06/2022	07:27:35	00:05:24	07:32:59	00:00:01	1	6	FLOMOR0322_ST14_2022_06_01_072734	24.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST15	01/06/2022	07:03:20	00:10:00	07:13:20	00:00:01	2	5	FLOMOR0322_ST15_2022_06_01_070319	22.0		Top - Plan View	10	N	N
5115	01/06/2022	07:13:20	00:01:23	07:14:43	00:00:01	2	3	FLOMOR0322_ST15_2022_06_01_071321	22.0	SubC Rayfin PLE System	Top - Plan view	10	IN	IN
ST16	29/05/2022	13:46:30	00:02:42	13:49:12	00:00:02	1	5	FLOMOR0322_ST16_2022_05_29_134628	37.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST17	29/05/2022	14:07:00	00:02:36	14:09:36	00:00:03	1	5	FLOMOR0322_ST17_2022_05_29_140657	35.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST18	28/05/2022	17:01:40	00:03:32	17:05:12	00:00:03	1	6	FLOMOR0322_ST18_2022_05_28_170137	34.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST19	28/05/2022	16:33:15	00:02:28	16:35:43	00:00:05	1	5	FLOMOR0322_ST19_2022_05_28_163310	32.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST20	28/05/2022	16:07:11	00:06:16	16:13:27	00:00:04	1	5	FLOMOR0322_ST20_2022_05_28_060707	32.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST21	28/05/2022	14:02:30	00:04:21	14:06:51	00:00:05	1	6	FLOMOR0322_ST21_2022_05_28_140225	32.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST22	28/05/2022	14:35:20	00:03:24	14:38:44	00:00:03	1	5	FLOMOR0322_ST22_2022_05_28_143517	25.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST23	28/05/2022	13:19:40	00:03:09	13:22:49	00:00:04	1	5	FLOMOR0322_ST23_2022_05_28_131936	29.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST24	01/06/2022	08:35:20	00:04:27	08:39:47	00:00:00	1	6	FLOMOR0322_ST24_2022_06_01_083520	26.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST25	01/06/2022	10:23:20	00:04:55	10:28:15	00:00:01	1	6	FLOMOR0322_ST25_2022_06_01_102319	30.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST26	29/05/2022	13:22:55	00:02:37	13:25:32	00:00:02	1	5	FLOMOR0322_ST26_2022_05_29_132253	38.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST27	28/05/2022	17:51:55	00:03:33	17:55:28	00:00:04	1	7	FLOMOR0322_ST27_2022_05_28_175151	34.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST28	29/05/2022	12:08:55	00:03:47	12:12:42	00:00:01	1	6	FLOMOR0322_ST28_2022_05_29_120854	37.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST29	29/05/2022	11:50:22	00:03:00	11:53:22	00:00:01	1	5	FLOMOR0322_ST29_2022_05_29_115021	35.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST30	28/05/2022	15:27:15	00:07:44	15:34:59	00:00:03		8	FLOMOR0322_ST30_2022_05_28_152712	29.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST31 ST32	28/05/2022 29/05/2022	15:03:52 12:47:00	00:07:45 00:04:06	15:11:37 12:51:06	00:00:06 00:00:03	1	5	FLOMOR0322_ST31_2022_05_28_150346 FLOMOR0322_ST32_2022_05_29_124657	27.0	SubC Rayfin PLE System	Top - Plan View Top - Plan View	10 10	N N	N N
ST32 ST33	29/05/2022	12.47.00	00:04:06	12.51.00	00.00.03		5	FLOMOR0322_5132_2022_05_29_124637	30.0	SubC Rayfin PLE System	on not sampled due to being	-	IN	IN
ST34	29/05/2022	18:39:00	00:03:45	18:42:45	00:00:09	1	5	FLOMOR0322_ST34_2022_05_29_183851	30.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST34	29/05/2022	17:14:00	00:07:18	17:21:18	00:00:04	1	5	FLOMOR0322_5154_2022_05_29_105051	34.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST36	29/05/2022	13:04:45	00:02:38	13:07:23	00:00:02	1	5	FLOMOR0322_ST36_2022_05_29_130443	38.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST37	29/05/2022	12:28:50	00:02:59	12:31:49	00:00:02	1	5	FLOMOR0322_ST37_2022_05_29_122848	36.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST38	28/05/2022	13:36:37	00:03:37	13:40:14	00:00:04	1	5	FLOMOR0322_ST38_2022_05_28_133633	35.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST39	28/05/2022	15:47:15	00:03:29	15:50:44	00:00:03	1	7	FLOMOR0322_ST39_2022_05_28_154712	27.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST40	01/06/2022	10:09:10	00:03:25	10:12:35	00:00:01	1	6	FLOMOR0322_ST40_2022_06_01_100909	25.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST41	29/05/2022	15:23:00	00:02:51	15:25:51	00:00:02	1	5	FLOMOR0322_ST41_2022_05_29_152258	34.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST42	29/05/2022	15:58:45	00:02:52	16:01:37	00:00:03	1	5	FLOMOR0322_ST42_2022_05_29_155842	38.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST43	29/05/2022	14:21:20	00:03:45	14:25:05	00:00:03	1	6	FLOMOR0322_ST43_2022_05_29_142117	34.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST44	28/05/2022	17:33:30	00:03:15	17:36:45	00:00:04	1	5	FLOMOR0322_ST44_2022_05_28_173326	34.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST45	01/06/2022	08:15:55	00:04:54	08:20:49	00:00:00	1	6	FLOMOR0322_ST45_2022_06_01_081555	27.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST46										· · ·	on not sampled due to being	covered by TR02		
ST47											on not sampled due to being	covered by TR03		
ST48	28/05/2022	17:16:45	00:03:00	17:19:45	00:00:04	1	8	FLOMOR0322_ST48_2022_05_28_171641	32.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST49	28/05/2022	13:00:27	00:02:26	13:02:53	00:00:04	1	6	FLOMOR0322_ST49_2022_05_28_130024	26.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST50	01/06/2022	04:46:45	00:04:40	04:51:25	00:00:00	1	7	FLOMOR0322_ST50_2022_06_01_044645	34.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
ST51	01/06/2022	06:41:30	00:10:00	06:51:30	00:00:00	2	4	FLOMOR0322_ST51_2022_06_01_064130	22.0	SubC Rayfin PLE System	Top - Plan View	10	N	N
		06:51:30	00:00:32	06:52:02	00:00:01		1	FLOMOR0322_ST51_2022_06_01_0656131						
		05:02:50	00:10:00	05:12:50	00:00:01	4	28	FLOMOR0322_TR01_2022_06_01_050249						
TR01	01/06/2022	05:12:50	00:10:00	05:22:50	00:00:01	3	9	FLOMOR0322_TR01_2022_06_01_052252	33	SubC Rayfin PLE System	Top - Plan View	10	N	N
		05:22:10	00:01:12	05:23:22	00:00:01			FLOMOR0322_TR01_2022_06_01_053235						
	01 (02 (0777	09:29:55	00:10:00	09:39:55	00:00:01		12	FLOMOR0322_TR02_2022_06_01_092954						
TR02	01/06/2022	09:39:55	00:10:00	09:49:55	00:00:01	3	16	FLOMOR0322_TR02_2022_06_01_093955	24	SubC Rayfin PLE System	Top - Plan View	10	N	N
├ ───- ↓		09:49:55	00:10:00	09:59:55	00:00:01		10	FLOMOR0322_TR02_2022_06_01_094956						
TR03	01/06/2022	08:55:15	00:10:00	09:05:15	00:00:02	2	16	FLOMOR0322_TR03_2022_06_01_085513	23	SubC Rayfin PLE System	Top - Plan View	10	N	N
├ ──- 	-	09:05:15	00:07:02	09:12:17	00:00:01		12	FLOMOR0322_TR03_2022_06_01_090514		, ,				┥───┤
TR04	29/05/2022	16:21:10	00:10:00	16:31:10	00:00:03	2	18	FLOMOR0322_TR04_2022_05_29_162107	38	SubC Rayfin PLE System	Top - Plan View	10	N	N
		17:31:10	00:07:10	17:38:20	00:00:03		13	FLOMOR0322_TR04_2022_05_29_163109		-, -,				

Appendix V - Morecambe OWF drop-down camera stills survey logs.

Station	Image File Name	Fix Time (UTC)	Date	Target Easting	Target Northing	Sampled Easting	Sampled Northing	Distance from Target (m)
ST02	FLOMOR0222_ST02_2022_05_29_165557.jpg	16:56:01	29/05/2022	461209.685	5957188.416		5957174.598	14.0
ST02	FLOMOR0222_ST02_2022_05_29_165623.jpg	16:56:26	29/05/2022	461209.685			5957177.337	11.5
ST02	FLOMOR0222_ST02_2022_05_29_165706.jpg	16:57:10	29/05/2022	461209.685				12.1
ST02 ST02	FLOMOR0222_ST02_2022_05_29_165757.jpg FLOMOR0222_ST02_2022_05_29_165844.jpg	16:58:00 16:58:47	29/05/2022 29/05/2022	461209.685 461209.685			5957187.276 5957194.208	1.8 7.9
ST02	FLOMOR0222_ST02_2022_05_29_165844.jpg	16:59:31	29/05/2022	461209.685				17.1
ST02	FLOMOR0222_ST03_2022_05_29_173503.jpg	17:35:06	29/05/2022	462611.030			5957146.247	17.1
ST03	FLOMOR0222_ST03_2022_05_29_173546.jpg	17:35:49	29/05/2022	462611.030			5957145.636	10.4
ST03	FLOMOR0222_ST03_2022_05_29_173621.jpg	17:36:24	29/05/2022	462611.030	5957149.039	462610.930	5957144.714	4.3
ST03	FLOMOR0222_ST03_2022_05_29_173701.jpg	17:37:05	29/05/2022	462611.030	5957149.039	462607.700	5957144.740	5.4
ST03	FLOMOR0222_ST03_2022_05_29_173738.jpg	17:37:41	29/05/2022	462611.030			5957155.199	7.1
ST04	FLOMOR0222_ST04_2022_06_01_042114.jpg	04:21:15	01/06/2022	464111.030			5957156.328	22.1
ST04	FLOMOR0222_ST04_2022_06_01_042155.jpg	04:21:57	01/06/2022	464111.030			5957152.725	17.1
ST04	FLOMOR0222_ST04_2022_06_01_042227.jpg	04:22:29	01/06/2022	464111.030			5957153.776	12.8
ST04 ST04	FLOMOR0222_ST04_2022_06_01_042241.jpg FLOMOR0222_ST04_2022_06_01_042306.jpg	04:22:43 04:23:08	01/06/2022	464111.030 464111.030			5957151.043 5957156.406	9.3 8.4
ST04	FLOMOR0222_ST04_2022_06_01_042330.jpg	04:23:31	01/06/2022	464111.030			5957154.053	5.2
ST04	FLOMOR0222_ST04_2022_06_01_042350.jpg	04:23:51	01/06/2022	464111.030			5957151.262	7.6
ST04	FLOMOR0222_ST04_2022_06_01_042441.jpg	04:24:44	01/06/2022	464111.030			5957145.499	8.0
ST05	FLOMOR0222_ST05_2022_06_01_054919.jpg	05:49:15	01/06/2022	465611.030	5957149.039	465597.998	5957141.733	14.9
ST05	FLOMOR0222_ST05_2022_06_01_055046.jpg	05:50:42	01/06/2022	465611.030	5957149.039	465612.529	5957140.959	8.2
ST05	FLOMOR0222_ST05_2022_06_01_055151.jpg	05:51:47	01/06/2022	465611.030			5957140.377	10.0
ST05	FLOMOR0222_ST05_2022_06_01_055229.jpg	05:52:26	01/06/2022	465611.030	5957149.039		5957139.785	13.5
ST05	FLOMOR0222_ST05_2022_06_01_055303.jpg	05:52:59	01/06/2022	465611.030			5957144.944	5.9
ST05	FLOMOR0222_ST05_2022_06_01_055340.jpg	05:53:37	01/06/2022	465611.030			5957150.088	1.2
ST05 ST05	FLOMOR0222_ST05_2022_06_01_055413.jpg FLOMOR0222_ST05_2022_06_01_055453.jpg		01/06/2022	465611.030			5957152.491 5957155.475	3.6 8.6
ST05	FLOMOR0222_ST05_2022_06_01_053433.jpg				5956911.428			34.2
ST06	FLOMOR0222_ST06_2022_06_01_061244.jpg				5956911.428			7.6
ST06	FLOMOR0222_ST06_2022_06_01_061349.jpg	06:13:46	01/06/2022		5956911.428			1.3
ST06	FLOMOR0222_ST06_2022_06_01_061446.jpg	06:14:42	01/06/2022	466873.419	5956911.428	466881.665	5956916.967	9.9
ST06	FLOMOR0222_ST06_2022_06_01_061555.jpg	06:15:51	01/06/2022	466873.419	5956911.428	466889.182	5956912.408	15.8
ST06	FLOMOR0222_ST06_2022_06_01_061635.jpg	06:16:31	01/06/2022	466873.419	5956911.428	466889.174	5956915.913	16.4
ST07	FLOMOR0222_ST07_2022_05_29_144401.jpg	14:44:04	29/05/2022	455127.525				6.8
ST07	FLOMOR0222_ST07_2022_05_29_144425.jpg	14:44:28			5959655.225			6.3
ST07	FLOMOR0222_ST07_2022_05_29_144457.jpg	14:45:00			5959655.225			5.3
ST07 ST07	FLOMOR0222_ST07_2022_05_29_144533.jpg FLOMOR0222_ST07_2022_05_29_144558.jpg	14:45:37 14:46:01	29/05/2022 29/05/2022	455127.525 455127.525			5959657.056 5959645.829	9.1 12.2
ST07	FLOMOR0222_ST08_2022_05_29_150332.jpg	15:03:35	29/05/2022	456611.030				9.3
ST08	FLOMOR0222_ST08_2022_05_29_150408.jpg	15:04:11	29/05/2022	456611.030				6.6
ST08	FLOMOR0222_ST08_2022_05_29_150447.jpg	15:04:50	29/05/2022	456611.030				9.5
ST08	FLOMOR0222_ST08_2022_05_29_150531.jpg	15:05:34	29/05/2022	456611.030	5959649.039	456621.558	5959643.719	11.8
ST08	FLOMOR0222_ST08_2022_05_29_150601.jpg	15:06:04	29/05/2022	456611.030	5959649.039	456618.558	5959632.843	17.9
ST08	FLOMOR0222_ST08_2022_05_29_150613.jpg	15:06:16	29/05/2022	456611.030				15.9
ST09	FLOMOR0222_ST09_2022_05_28_124008.jpg	12:40:11	28/06/2022	464135.247	5964444.396		5964441.337	13.3
ST09	FLOMOR0222_ST09_2022_05_28_124036.jpg	12:40:40	28/06/2022	464135.247	5964444.396			12.3
ST09 ST09	FLOMOR0222_ST09_2022_05_28_124117.jpg	12:41:20	28/06/2022	464135.247 464135.247	5964444.396 5964444.396		5964441.474 5964444.902	3.5
ST09 ST09	FLOMOR0222_ST09_2022_05_28_124144.jpg FLOMOR0222_ST09_2022_05_28_124218.jpg	12:41:47 12:42:21	28/06/2022	464135.247				6.3
ST10	FLOMOR0222_ST09_2022_05_28_124218.jpg	15:43:25	29/06/2022	459611.030				1.5
ST10	FLOMOR0222_ST10_2022_05_29_154347.jpg		29/06/2022		5959649.039			4.3
ST10	FLOMOR0222_ST10_2022_05_29_154432.jpg	15:44:35	29/06/2022	459611.030				11.1
ST10	FLOMOR0222_ST10_2022_05_29_154457.jpg	15:45:00	29/06/2022	459611.030	5959649.039	459624.699	5959636.646	18.5
ST10	FLOMOR0222_ST10_2022_05_29_154508.jpg	15:45:11			5959649.039			19.0
ST11	FLOMOR0222_ST11_2022_05_29_175924.jpg	17:59:28			5958604.849			18.8
ST11	FLOMOR0222_ST11_2022_05_29_180012.jpg				5958604.849			12.2
ST11	FLOMOR0222_ST11_2022_05_29_180037.jpg	18:00:40			5958604.849			6.2
ST11 ST11	FLOMOR0222_ST11_2022_05_29_180118.jpg FLOMOR0222_ST11_2022_05_29_180200.jpg	18:01:21 18:02:03			5958604.849 5958604.849			0.6
ST11 ST12	FLOMOR0222_ST11_2022_05_29_180200.jpg FLOMOR0222_ST12_2022_05_29_182109.jpg	18:02:03		461377.879				3.4 18.7
ST12	FLOMOR0222_ST12_2022_05_29_182109.jpg	18:21:54			5959649.039			10.4
ST12	FLOMOR0222_ST12_2022_05_29_182229.jpg	18:22:32	29/06/2022	462611.030				7.4
ST12	FLOMOR0222_ST12_2022_05_29_182310.jpg	18:23:14	29/06/2022	462611.030				14.1
ST12	FLOMOR0222_ST12_2022_05_29_182419.jpg	18:24:23	29/06/2022	462611.030		462626.960	5959655.429	17.2
ST13	FLOMOR0222_ST13_2022_06_01_075355.jpg	07:53:51	01/06/2022	464297.252				19.4
ST13	FLOMOR0222_ST13_2022_06_01_075439.jpg	07:54:35	01/06/2022	464297.252	5959542.956	464308.577	5959535.600	13.5

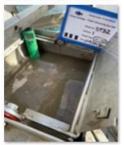
Appendix VI - Morecambe OWF grab survey logs

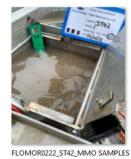
	Station Details		ampling Det	tails		Metadata	1									Positio	onal Data				
Station I.D.	Attempt Sample Type (as	Sampled Type Method	Vessel	Personnel	Wind	Wind Force (Beaufort)	Tide	Tide Rate	Water	Fix	Date	Time (UTC)		Target Longitude	Target Easting	Target Northing	Sampled	Sampled	Sampled	Sampled	Coordinate System
ST01	No. per SoW) 1 PSD & MACRO	(Post-Survey) PSD & MACRO Day Grab	Seren Las	(Initials) AK / SA	Direction NE	F3 - 7-10 knots (Gentle breeze)	Direction W	(knots) 0.3	Depth (m) 37	Number 3074	06/06/2022	09:46:50	(DD) 53.759357	(DD) -3.613913	459526.752	5956923.006	Latitude (DD) 53.759304	Longitude (DD) -3.613803	Easting 459534.014	Northing 5956917.060	WGS 84 / UTM Zone 30N
ST01	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	w	0.3	37	3075	06/06/2022	09:53:05	53.759357	-3.613913	459526.752	5956923.006	53.759344	-3.613876	459529.217	5956921.522	WGS 84 / UTM Zone 30N
ST02	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.5	36	3071	06/06/2022	09:23:05	53.761870	-3.588421	461209.685	5957188.416	53.761874	-3.588412	461210.296	5957188.867	WGS 84 / UTM Zone 30N
ST02	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.5	36	3072	06/06/2022	09:29:59	53.761870	-3.588421	461209.685	5957188.416	53.761852	-3.588389	461211.800	5957186.369	WGS 84 / UTM Zone 30N
ST03 ST04	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab PSD & MACRO Day Grab	Seren Las Seren Las	ER / KK ER / KK	NE NE	F1 - 1-3 knots (Light air)	W	0.9	34 33	3038 3035	02/06/2022 02/06/2022	06:07:48 05:25:08	53.761619 53.761724	-3.567160 -3.544407	462611.030 464111.030	5957149.039 5957149.039	53.761656 53.761759	-3.567073 -3.544359	462616.772 464114.242	5957153.161 5957152.832	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST04	1 CONTAMINANTS	PSD & MACRO Day Grab CONTAMINANTS Day Grab	Seren Las	ER / KK	NE	F1 - 1-3 knots (Light air) F1 - 1-3 knots (Light air)	W	1.3	33	3033	02/06/2022	03.23.08	53.761826	-3.521655	465611.030	5957149.039	53.761960	-3.521688	465608.928	5957163.974	WGS 84 / UTM Zone 30N
ST05	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	ER / KK	NE	F1 - 1-3 knots (Light air)	w	1.1	33	3032	02/06/2022	04:49:59	53.761826	-3.521655	465611.030	5957149.039	53.761856	-3.521741	465605.363	5957152.496	WGS 84 / UTM Zone 30N
ST06	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	ER / KK	NE	F1 - 1-3 knots (Light air)	W	1.3	33	3030	02/06/2022	04:12:12	53.759772	-3.502480	466873.419	5956911.428	53.759793	-3.502608	466865.056	5956913.891	WGS 84 / UTM Zone 30N
ST07 ST08	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las Seren Las	AK / SA AK / SA	NE NE	F2 - 4-6 knots (Light breeze)	E	0.8	37 34	3081 3080	06/06/2022	11:11:28 10:55:05	53.783553 53.783623	-3.681035 -3.658521	455127.525 456611.030	5959655.225 5959649.039	53.783527	-3.681098	455123.350 456600.557	5959652.413	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST08	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze) F3 - 7-10 knots (Gentle breeze)	W	1.1	27	3055	06/06/2022	05:34:04	53.827295	-3.544889	456611.030	5964444.396	53.783508 53.827169	-3.658678 -3.544904	456600.557	5959636.344 5964430.292	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST10	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.6	33	3066	06/06/2022	08:00:17	53.783864	-3.612992	459611.030	5959649.039	53.783911	-3.612980	459611.850	5959654.219	WGS 84 / UTM Zone 30N
ST11	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.6	31	3067	06/06/2022	08:21:37	53.774613	-3.586047	461377.879	5958604.849	53.774553	-3.585970	461382.877	5958598.062	WGS 84 / UTM Zone 30N
ST11	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.6	31	3068	06/06/2022	08:28:49	53.774613	-3.586047	461377.879	5958604.849	53.774565	-3.585945	461384.575	5958599.396	WGS 84 / UTM Zone 30N
ST12 ST13	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab PSD & MACRO Day Grab	Seren Las Seren Las	AK / SA ER / KK	NE NE	F3 - 7-10 knots (Gentle breeze) F1 - 1-3 knots (Light air)	W	0.6	28 26	3069 3043	06/06/2022 02/06/2022	08:46:46 07:17:30	53.784088 53.783253	-3.567463 -3.541860	462611.030 464297.252	5959649.039 5959542.956	53.784084 53.783301	-3.567493 -3.541898	462609.078 464294.746	5959648.520 5959548.265	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST14	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	ER / KK	NE	F1 - 1-3 knots (Light air)	W	0.9	24	3039	02/06/2022	06:25:43	53.774299	-3.522242	465582.517	5958537.019	53.774294	-3.522241	465582.571	5958536.525	WGS 84 / UTM Zone 30N
ST15	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	ER / KK	NE	F1 - 1-3 knots (Light air)	W	0.7	22	3042	02/06/2022	06:57:42	53.780980	-3.508139	466517.251	5959273.583	53.781083	-3.508254	466509.741	5959285.119	WGS 84 / UTM Zone 30N
ST16	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F2 - 4-6 knots (Light breeze)	E	1.2	37	3084	06/06/2022	11:57:51	53.805697	-3.727200	452111.030	5962149.039	53.805621	-3.727088	452118.354	5962140.503	WGS 84 / UTM Zone 30N
ST17 ST18	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab PSD & MACRO Day Grab	Seren Las Seren Las	AK / SA AK / SA	NE NE	F2 - 4-6 knots (Light breeze) F2 - 4-6 knots (Light breeze)	E	1.2	35	3085 3086	06/06/2022	12:13:31 12:32:42	53.805833 53.801699	-3.704425 -3.674711	453611.030 455563.417	5962149.039 5961670.060	53.805812 53.801836	-3.704357 -3.674799	453615.431 455557.767	5962146.618 5961685.359	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST18	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK / SA	NE	F2 - 4-6 knots (Light breeze)	E	1.4	37	3080	06/06/2022	12:32:42	53.801699	-3.674711	455563.417	5961670.060	53.801650	-3.674566	455572.934	5961666.635	WGS 84 / UTM Zone 30N
ST19	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	w	0.8	33	3065	06/06/2022	07:32:30	53.801737	-3.636314	458092.235	5961650.961	53.801793	-3.636472	458081.880	5961657.323	WGS 84 / UTM Zone 30N
ST20	2 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.8	33	3063	06/06/2022	07:09:48	53.801607	-3.612680	459648.621	5961622.767	53.801598	-3.612716	459646.223	5961621.884	WGS 84 / UTM Zone 30N
ST20	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.8	33	3064	06/06/2022	07:17:29	53.801607	-3.612680	459648.621	5961622.767	53.801597	-3.612799	459640.788	5961621.739	WGS 84 / UTM Zone 30N
ST21 ST22	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab PSD & MACRO Day Grab	Seren Las Seren Las	AK / SA AK / SA	NE NE	F3 - 7-10 knots (Gentle breeze) F3 - 7-10 knots (Gentle breeze)	W	1.0	31 25	3061 3058	06/06/2022	06:50:36 06:20:43	53.801258 53.815544	-3.590328 -3.572808	461120.428 462287.113	5961571.479 5963151.507	53.801321 53.815461	-3.590440 -3.572905	461113.065 462280.667	5961578.599 5963142.330	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST22	2 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK/SA AK/SA	NE	F3 - 7-10 knots (Gentle breeze)	w	1.0	25	3060	06/06/2022	06:32:36	53.815544	-3.572808	462287.113	5963151.507	53.815569	-3.572854	462284.091	5963154.249	WGS 84 / UTM Zone 30N
ST23	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	ER / KK	NE	F1 - 1-3 knots (Light air)	E	0.1	28	3046	02/06/2022	07:56:11	53.806148	-3.544223	464161.071	5962091.300	53.806187	-3.544127	464167.405	5962095.542	WGS 84 / UTM Zone 30N
ST23	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	ER / KK	NE	F1 - 1-3 knots (Light air)	E	0.1	28	3047	02/06/2022	08:01:19	53.806148	-3.544223	464161.071	5962091.300	53.806230	-3.544240	464160.002	5962100.416	WGS 84 / UTM Zone 30N
ST24 ST25	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	ER / KK ER / KK	NE NE	F1 - 1-3 knots (Light air)	E	0.1	25 25	3048 3050	02/06/2022	08:17:52 09:11:47	53.807211 53.806862	-3.521421 -3.499435	465663.487 467111.030	5962198.327 5962149.039	53.807311 53.806922	-3.521396 -3.499428	465665.257 467111.566	5962209.349 5962155.677	WGS 84 / UTM Zone 30N
ST25	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab PSD & MACRO Day Grab	Seren Las Seren Las	AK / SA	W	F1 - 1-3 knots (Light air) F2 - 4-6 knots (Light breeze)	W	0.5	36	3050	02/06/2022	09:11:47	53.827826	-3.708447	453370.566	5964598.521	53.827841	-3.708422	453372.205	5964600.170	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST26	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK / SA	w	F2 - 4-6 knots (Light breeze)	W	0.5	36	3100	07/06/2022	09:07:29	53.827826	-3.708447	453370.566	5964598.521	53.827830	-3.708401	453373.619	5964598.898	WGS 84 / UTM Zone 30N
ST27	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	W	F2 - 4-6 knots (Light breeze)	W	0.6	34	3101	07/06/2022	09:28:09	53.828434	-3.682013	455111.030	5964649.039	53.828498	-3.681926	455116.869	5964656.171	WGS 84 / UTM Zone 30N
ST28	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	W	F2 - 4-6 knots (Light breeze)	W	0.8	34	3093	07/06/2022	07:50:44	53.828561	-3.659225	456611.030	5964649.039	53.828598	-3.659170	456614.664	5964653.124	WGS 84 / UTM Zone 30N
ST29 ST30	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab PSD & MACRO Day Grab	Seren Las Seren Las	AK / SA AK / SA	W W	F2 - 4-6 knots (Light breeze) F2 - 4-6 knots (Light breeze)	W	0.8	32 31	3092 3090	07/06/2022 07/06/2022	07:37:26 07:02:55	53.829748 53.827336	-3.638090 -3.609476	458003.250 459884.226	5964768.367 5964483.519	53.829856 53.827344	-3.638155 -3.609522	457999.094 459881.227	5964780.482 5964484.349	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST31	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	w	F2 - 4-6 knots (Light breeze)	w	1.1	30	3088	07/06/2022	06:41:28	53.828917	-3.590859	461111.030	5964649.039	53.828894	-3.590863	461110.737	5964646.436	WGS 84 / UTM Zone 30N
ST31	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK / SA	w	F2 - 4-6 knots (Light breeze)	W	1.1	30	3089	07/06/2022	06:49:30	53.828917	-3.590859	461111.030	5964649.039	53.828997	-3.590891	461108.988	5964657.926	WGS 84 / UTM Zone 30N
ST32	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	W	F2 - 4-6 knots (Light breeze)	W	0.5	36	3095	07/06/2022	08:19:48	53.850902	-3.682379	455111.030	5967149.039	53.850952	-3.682267	455118.434	5967154.527	WGS 84 / UTM Zone 30N
ST32 ST33	CONTAMINANTS PSD & MACRO	CONTAMINANTS Day Grab	Seren Las	AK / SA	W	F2 - 4-6 knots (Light breeze)	W	0.5	36	3096	07/06/2022	08:26:13	53.850902	-3.682379	455111.030	5967149.039	53.850913	-3.682381	455110.918	5967150.245	WGS 84 / UTM Zone 30N
ST33	- CONTAMINANTS		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ST34	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.5	30	3070	06/06/2022	09:00:51	53.774185	-3.557435	463263.110	5958542.026	53.774219	-3.557447	463262.310	5958545.807	WGS 84 / UTM Zone 30N
ST35	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	ER / KK	NE	F1 - 1-3 knots (Light air)	W	0.7	34	3036	02/06/2022	05:47:50	53.754578	-3.574860	462097.091	5956369.826	53.754577	-3.574825	462099.420	5956369.610	WGS 84 / UTM Zone 30N
ST35	1 CONTAMINANTS 1 PSD & MACRO	CONTAMINANTS Day Grab		ER / KK	NE	F1 - 1-3 knots (Light air)	W	0.7	34	3037	02/06/2022	05:54:31 08:41:40	53.754578	-3.574860	462097.091	5956369.826	53.754611	-3.574834	462098.863	5956373.457	WGS 84 / UTM Zone 30N
ST36 ST37	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab PSD & MACRO Day Grab		AK / SA AK / SA	W W	F2 - 4-6 knots (Light breeze) F2 - 4-6 knots (Light breeze)	W	0.5	36 34	3097 3094	07/06/2022 07/06/2022	08:04:47	53.843830 53.840330	-3.699583 -3.666338	453971.505 456155.158	5966373.181 5965962.777	53.843904 53.840292	-3.699529 -3.666346	453975.187 456154.618	5966381.368 5965958.520	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST38	1 PSD & MACRO	PSD & MACRO Day Grab		ER / KK	NE	F1 - 1-3 knots (Light air)	W	0.4	31	3044	02/06/2022	07:34:13	53.796950	-3.557820	463257.635	5961074.951	53.797032	-3.557845	463256.054	5961084.075	WGS 84 / UTM Zone 30N
ST38	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	ER / KK	NE	F1 - 1-3 knots (Light air)	W	0.4	31	3045	02/06/2022	07:40:18	53.796950	-3.557820	463257.635	5961074.951	53.796984	-3.557926	463250.667	5961078.782	WGS 84 / UTM Zone 30N
ST39	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	W	F2 - 4-6 knots (Light breeze)	W	1.1	30	3091	07/06/2022	07:16:42	53.817280	-3.612778	459657.190	5963366.583	53.817340	-3.612816	459654.797	5963373.254	WGS 84 / UTM Zone 30N
ST40 ST40	1 PSD & MACRO 1 CONTAMINANTS	PSD & MACRO Day Grab CONTAMINANTS Day Grab	Seren Las Seren Las	ER / KK ER / KK	NE NE	F3 - 7-10 knots (Gentle breeze) F3 - 7-10 knots (Gentle breeze)	W	1.4 2.4	22	3051 3052	02/06/2022 02/06/2022	09:20:41 09:27:24	53.813531 53.813531	-3.501536 -3.501536	466977.917 466977.917	5962892.013 5962892.013	53.813522 53.813566	-3.501498 -3.501554	466980.429 466976.772	5962891.009 5962895.912	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST40	2 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	E	0.2	35	3079	06/06/2022	10:37:22	53.778993	-3.634833	458167.160	5959119.766	53.778987	-3.634789	458170.012	5959119.084	WGS 84 / UTM Zone 30N
ST42	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.0	38	3076	06/06/2022	10:13:06	53.772118	-3.629121	458536.783	5958351.464	53.772150	-3.629112	458537.406	5958355.045	WGS 84 / UTM Zone 30N
ST42	1 CONTAMINANTS	CONTAMINANTS Day Grab		AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	0.0	38	3077	06/06/2022	10:20:03	53.772118	-3.629121	458536.783	5958351.464	53.772082	-3.628966	458546.946	5958347.439	WGS 84 / UTM Zone 30N
ST43	1 PSD & MACRO	PSD & MACRO Day Grab		AK / SA	NE	F2 - 4-6 knots (Light breeze)	E	0.8	34	3082	06/06/2022	11:29:52	53.794020	-3.706304	453474.193	5960836.048	53.793970	-3.706298	453474.558	5960830.465	WGS 84 / UTM Zone 30N
ST43 ST44	1 CONTAMINANTS 1 PSD & MACRO	CONTAMINANTS Day Grab PSD & MACRO Day Grab	Seren Las Seren Las	AK / SA AK / SA	NE W	F2 - 4-6 knots (Light breeze) F2 - 4-6 knots (Light breeze)	E W	0.8	34 35	3083 3102	06/06/2022 07/06/2022	11:36:22 09:41:56	53.794020 53.818647	-3.706304 -3.679853	453474.193 455242.801	5960836.048 5963558.811	53.794099 53.818640	-3.706240 -3.679814	453478.488 455245.347	5960844.798 5963558.038	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST44	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK / SA	w	F2 - 4-6 knots (Light breeze)	w	0.6	35	3103	07/06/2022	09:48:01	53.818647	-3.679853	455242.801	5963558.811	53.818660	-3.679755	455249.290	5963560.245	WGS 84 / UTM Zone 30N
ST45	1 PSD & MACRO	PSD & MACRO Day Grab		ER / KK	NE	F1 - 1-3 knots (Light air)	E	0.9	27	3049	02/06/2022	08:54:55	53.791864	-3.515431	466045.552	5960487.933	53.791874	-3.515421	466046.255	5960489.078	WGS 84 / UTM Zone 30N
ST46	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	ER / KK	NE	F3 - 7-10 knots (Gentle breeze)	E	1.4	22	3053	02/06/2022	09:44:17	53.823428	-3.504545	466787.669	5963994.446	53.823486	-3.504538	466788.125	5964000.980	WGS 84 / UTM Zone 30N
ST47 ST48	1 PSD & MACRO 1 PSD & MACRO	PSD & MACRO Day Grab PSD & MACRO Day Grab	Seren Las Seren Las	ER / KK AK / SA	NE W	F3 - 7-10 knots (Gentle breeze) F2 - 4-6 knots (Light breeze)	E W	1.9 0.6	25 33	3054 3104	02/06/2022 07/06/2022	10:14:02 10:04:12	53.814747 53.808624	-3.523907 -3.677860	465505.971 455363.366	5963037.928 5962442.488	53.814850 53.808661	-3.523885 -3.677672	465507.546 455375.793	5963049.400 5962446.451	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST48	1 CONTAMINANTS	CONTAMINANTS Day Grab		AK / SA	W	F2 - 4-6 knots (Light breeze)	W	0.6	33	3104	07/06/2022	10:04:12	53.808624	-3.677860	455363.366	5962442.488	53.808585	-3.677801	455367.214	5962446.451	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST49	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	1.1	25	3056	06/06/2022	05:55:12	53.816349	-3.552392	463631.928	5963230.410	53.816385	-3.552527	463623.071	5963234.429	WGS 84 / UTM Zone 30N
ST49	1 CONTAMINANTS	CONTAMINANTS Day Grab	Seren Las	AK / SA	NE	F3 - 7-10 knots (Gentle breeze)	W	1.1	25	3057	06/06/2022	06:03:56	53.816349	-3.552392	463631.928	5963230.410	53.816389	-3.552551	463621.494	5963234.930	WGS 84 / UTM Zone 30N
ST50	1 PSD & MACRO	PSD & MACRO Day Grab	Seren Las	ER / KK	NW	F1 - 1-3 knots (Light air)	W	1.1	34	3033	02/06/2022	05:01:22	53.755696	-3.527069	465249.064	5956469.728	53.755689	-3.527025	465251.924	5956468.987	WGS 84 / UTM Zone 30N
ST50 ST51	1 CONTAMINANTS 1 PSD & MACRO	CONTAMINANTS Day Grab PSD & MACRO Day Grab	Seren Las Seren Las	ER / KK ER / KK	NW NW	F1 - 1-3 knots (Light air) F1 - 1-3 knots (Light air)	W	1.1 0.7	34 22	3034 3040	02/06/2022 02/06/2022	05:09:32 06:42:32	53.755696 53.775538	-3.527069 -3.501746	465249.064 466934.211	5956469.728 5958665.120	53.755651 53.775545	-3.527082 -3.501759	465248.130 466933.351	5956464.700 5958665.936	WGS 84 / UTM Zone 30N WGS 84 / UTM Zone 30N
ST51	1 CONTAMINANTS	· · · · ·	Seren Las	ER / KK	NW	F1 - 1-3 knots (Light air)	w	0.7	22	3040	02/06/2022	06:48:15	53.775538	-3.501746	466934.211	5958665.120	53.775568	-3.501789	466931.389	5958668.482	WGS 84 / UTM Zone 30N
,			-		•				•		•		•					•		•	·]

Appendix VII(a) - Morecambe OWF grab sample photos (Unreleased).

FLOMOR0222_ST01_MMO SAMPLES

FLOMOR0222_ST09_PSA MACRO


FLOMOR0222_ST17_PSA MACRO


MOR0222_ST21_PSA MACRO

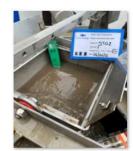
FLOMOR0222_ST28_PSA MACRO

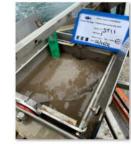
FLOMOR0222_ST32_PSA MACRO

FLOMOR0222_ST10_PSA MACRO

FLOMOR0222 ST18 MMO SAMPLES

FLOMOR0222_ST22_MMO SAMPLES


FLOMOR0222_ST29_PSA MACRO


FLOMOR0222_ST34_PSA MACRO

FLOMOR0222 ST42 PSA MACRO

FLOMOR0222_ST02_MMO SAMPLES

FLOMOR0222_ST18_PSA MACRO

FLOMOR0222_ST36_PSA MACRO

FLOMOR0222_ST43_MMO SAMPLES

FLOMOR0222_ST19_PSA MACRO

FLOMOR0222_ST26_MMO SAMPLES

R0222_ST31_MMO SAMPLES

FLOMOR0222_ST37_PSA MACRO

22 ST43 PSA M.

FLOMOR0222_ST12_PSA MACRO

FLOMOR0222_ST20_MMO SAMPLES

ST44 MMC

FLOMOR0222_ST20_PSA MACRO

FLOMOR0222_ST32_MMO SAMPLES

FLOMOR0222_ST41_PSA MACRO

FLOMOR0222_ST44_PSA MACRO

0222 ST48 MMO SAMPLES

FLOMOR0222 ST48 PSA MACRO

FLOMOR0222 ST49 MMO SAMPLES

FLOMOR0222_ST49_PSA MACRC

Appendix VII(b) - Morecambe OWF grab sample photos (released)

FLOMOR0222_ST01_RELEASED

FLOMOR0222_ST20_RELEASED

FLOMOR0222_ST29_RELEASED

FLOMOR0222_ST37_RELEASED

FLOMOR0222_ST48_RELEASED

FLOMOR0222_ST02_RELEASED

FLOMOR0222_ST12_RELEASED

FLOMOR0222_ST21_RELEASED

FLOMOR0222_ST30_RELEASED

FLOMOR0222_ST39_RELEASED

FLOMOR0222_ST07_RELEASED

FLOMOR0222_ST16_RELEASED

FLOMOR0222_ST22_RELEASED

FLOMOR0222_ST31_RELEASED

FLOMOR0222_ST08_RELEASED

FLOMOR0222_ST17_RELEASED

FLOMOR0222_ST42_RELEASED

FLOMOR0222_ST18_RELEASED

FLOMOR0222_ST34_RELEASED

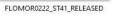
FLOMOR0222_ST43_RELEASED

FLOMOR0222_ST10_RELEASED

FLOMOR0222_ST19_RELEASED

FLOMOR0222_ST28_RELEASED

FLOMOR0222_ST44_RELEASED



Appendix VII(c) - Morecambe OWF grab sample photos (sieved)

FLOMOR0222_ST01_SIEVED

FLOMOR0222_ST12_SIEVED

FLOMOR0222_ST21_SIEVED

FLOMOR0222_ST30_SIEVED

FLOMOR0222_ST39_SIEVED

FLOMOR0222_ST49_SIEVED

FLOMOR0222_ST02_SIEVED

FLOMOR0222_ST16_SIEVED

FLOMOR0222_ST22_SIEVED

FLOMOR0222_ST31_SIEVED

FLOMOR0222_ST41_SIEVED

FLOMOR0222_ST17_SIEVED

FLOMOR0222_ST26_SIEVED

FLOMOR0222_ST32_SIEVED

FLOMOR0222_ST42_SIEVED

FLOMOR0222_ST08_SIEVED

FLOMOR0222_ST18_SIEVED

FLOMOR0222_ST27_SIEVED

FLOMOR0222_ST34_SIEVED

FLOMOR0222_ST43_SIEVED

FLOMOR0222_ST19_SIEVED

FLOMOR0222_ST44_SIEVED

FLOMOR0222_ST11_SIEVED

FLOMOR0222_ST20_SIEVED

FLOMOR0222_ST29_SIEVED

FLOMOR0222_ST37_SIEVED

FLOMOR0222_ST48_SIEVED

Appendix VIII - PSD raw data

Aperture (um) ST01 ST02 ST03 ST04	ST05 ST06	ST07 ST08 S	ST09 ST10 ST11	ST12 ST1	3 ST14 S	T15 ST16	ST17	ST18 ST19	9 ST20	ST21	ST22 ST	23 ST24	ST25	ST26	ST27 ST	T28 ST29	ST30 S	5T31 ST	T32 ST34	ST35	ST36 S	T37 ST38	ST39	ST40 ST	T41 ST4	42 ST43	ST44 ST4	5 ST46	ST47 S	T48 ST49	ST50 ST51
63000.000 0.000 0.000 0.000 0.000	0.000 0.000					000 0.000		0.000 0.00	0.000		0.000 0.0		0.000			000 0.000		000 01	000 0.000	0.000		000 0.000	0.000	0.000 0.0	000 0.0		0.000 0.00	0,000		000 0.000	0.000 0.000
45000.000 0.000 0.000 0.000 0.000			0.000 0.000 0.000	0.000 0.01		.000 0.000		0.000 0.00	0.000		0.000 0.0		0.000			000 0.000		000 01	000 0.000	0.000		.000 0.000	0.000		000 0.0	00 0.000	0.000 0.00	0.000	0.000 0.	.000 0.000	0.000 0.000
31500.000 0.000 0.000 0.000 0.000			0.000 0.000 0.000			000 0.000		0.000 0.00			0.000 0.0					000 0.000			000 0.000	0.000		000 0.000	0.000		000 0.0		0.000 0.00			000 0.000	0.000 0.000
22400.000 0.000 0.000 0.000 0.000	0.000 0.000 0					000 0.000		0.000 0.00			0.000 0.0		0.000			000 0.000		000 0.0	000 0.000	0.000			0.000					0.000	0.000 0.	000 0.000	0.000 0.000
		0.000 0.000 0	0.000 0.000 0.000	0.000 0.0	0.000 0			0.000 0.000	0.000	0.000	0.000 0.0		0.000		0.000 0.0	0.000	0.000 0.			0.000		0.000	0.000	0.000 0.0	000 0.0	0.000	0.000 0.00	0.000	0.000 0.	0.000	0.000
16000.000 0.000 0.000 0.000 0.000	0.000 0.000		0.000 0.000 0.000			.000 0.000		0.000 0.00			0.000 0.0					000 0.000			000 0.000	0.000		.000 0.000			000 0.0		0.000 0.00	0.000		.000 0.000	0.240 0.000
11200.000 4.135 0.000 0.000 0.000			0.000 0.000 0.000			.000 0.000		0.000 0.00			0.000 0.0					000 0.000			000 0.000	0.000		.000 0.000			000 0.0		0.000 0.00	0 0.039	0.000 0.	.000 0.000	0.000 0.000
8000.000 3.796 0.000 0.000 0.000			0.000 0.000 0.000	0.000 0.00		.000 0.000		0.000 0.05			0.000 0.0					000 0.000			000 0.000	0.000		.000 0.000	0.000		000 0.0		0.000 0.00			.000 0.000	0.000 0.000
5600.000 3.832 0.000 0.001 0.000			0.000 0.000 0.000			.022 0.029		0.024 0.00			0.014 0.0				0.015 0.0	011 0.000	0.000 0.		033 0.065	0.000		.000 0.000	0.004		028 0.0		0.031 0.00	0 0.024	0.000 0.	.000 0.000	0.000 0.099
4000.000 3.303 0.000 0.013 0.002		0.000 0	0.007 0.000 0.000	0.000 0.0	0 0.000 0	.022 0.052		0.005 0.01	0.004	0.001	0.010 0.0		0.000	0.000	0.010 0.0	005 0.000			168 0.013	0.011		.011 0.002	0.000		094 0.1		0.052 0.00	0.012	0.001 0.	.021 0.006	0.032 0.007
2800.000 2.912 0.003 0.004 0.002	0.004 0.000	0.015 0.028 0	0.018 0.000 0.002	0.011 0.0	68 0.003 C	.020 0.054	0.057	0.014 0.01	5 0.002	0.002	0.016 0.0	02 0.006	0.002	0.050	0.011 0.0	020 0.004	0.005 0.	0.005 0.0	016 0.015	0.008	0.045 0	.025 0.002	0.004	0.002 0.0	081 0.0	30 0.051	0.048 0.00	2 0.021	0.008 0.	.046 0.017	0.073 0.022
2000.000 2.624 0.006 0.006 0.002	0.004 0.002	0.023 0.039 0	0.015 0.013 0.002	0.004 0.10	08 0.003 0	.020 0.061	0.051	0.016 0.01	7 0.006	0.002	0.010 0.0	06 0.008	0.002	0.050	0.017 0.0	007 0.006	0.003 0.).005 0.(022 0.013	0.002	0.063 0	.008 0.004	0.011	0.009 0.1	115 0.0-	40 0.071	0.044 0.00	7 0.026	0.010 0.	.025 0.014	0.202 0.136
1400.000 3.264 0.014 0.010 0.004	0.016 0.007	0.063 0.049 0	0.029 0.007 0.006	0.017 0.19	96 0.010 C	.031 0.100	0.067	0.011 0.01	2 0.015	0.006	0.019 0.0	06 0.013	0.007	0.081	0.013 0.0	005 0.006	0.008 0.	0.010 0.0	008 0.018	0.022	0.060 0	.011 0.006	0.014	0.014 0.2	253 0.04	43 0.045	0.042 0.00	4 0.082	0.018 0.	.061 0.013	0.482 0.029
1000.000 2.122 0.030 0.043 0.022	0.018 0.027	0.341 0.209 0	0.044 0.016 0.043	0.056 0.14	48 0.016 C	.034 0.192	0.084	0.022 0.02	3 0.015	0.013	0.042 0.0	16 0.024	0.022	0.078	0.036 0.0	016 0.013	0.014 0.	0.023 0.0	022 0.030	0.233	0.065 0	.099 0.006	0.097	0.024 1.0	084 0.2	25 0.379	0.040 0.02	0 0.645	0.024 0.	.167 0.044	0.938 0.020
707.000 2.622 2.208 0.447 0.001	0.219 0.000	5.251 7.176 0	0.000 1.440 0.358	0.353 0.5	4 0.003 0	.000 4.985	4.365	0.914 1.89	7 0.504	0.000	1.255 0.0	00 0.000	0.000	2.167	1.167 0.0	033 0.001	0.000 0.).000 1.4	482 0.235	2.712	2.331 1	.686 0.000	1.909	0.000 3.9	923 2.5	09 7.731	2.339 0.00	0 12.431	0.000 2.	.623 0.000	0.202 0.005
500.000 4.862 6.412 5.370 2.404	0.125 0.007 1	0.522 18.535 0	0.017 8.736 6.032	6.771 5.4	3 1.044 0	.006 9.299	14.225	5.117 3.43	8 2.332	1.827	7.368 0.0	12 0.355	0.006	5.500	4.774 2.1	743 2.053	1.234 0.).122 3.9	992 3.437	8.693	4.964 4	.407 0.000	4.466	0.053 8.8	863 7.5	79 22.118	5.618 0.01	0 29.717	0.015 8.	.830 0.258	3.919 2.639
353.600 7.947 15.531 10.237 8.257	1.322 2.424 2	0.459 28.507 6	6.115 25.208 15.538	18.241 23.0	94 8.158 4	.487 17.203	25.276	8.572 6.03	7 6.005	7.034	28.037 3.9	63 12.958	3.743	20.068 1	18.366 6.4	454 7.278	5.659 2	2.051 13.	.009 10.033	18.163	19.154 13	8.105 0.635	11.149	13.382 20.	.252 14.9	26.715	11.839 3.11	0 32.959	5.083 16	5.165 9.389	6.738 15.062
250.000 16.722 20.858 17.000 7.348	8.205 5.274 3	5.584 28.462 24	4.886 33.367 14.148	18.385 24.3	75 26.637 2	3.748 31.928	32.484 2	2.210 16.12	4 8.387	5.920	4.356 10.8	823 25.768	11.227	39.191 3	39.471 22.	.222 10.862	6.796 6.	5.008 35.	.807 8.664	19.644	37.568 36	5.193 5.181	19.170	37.119 31.	.110 26.8	362 22.712	31.217 6.19	5 16.756	21.201 30	0.736 22.529	8.720 32.815
176.800 21.438 30.403 31.742 30.082	17.642 15.663 2	4.762 14.971 2	23.754 25.016 28.576	19.271 14.9	37 28.716 2	4.000 21.794	20.753 2	9.055 43.39	6 38.373	32.257	16.442 17.1	113 13.627	7.811	25.841 2	29.379 42.	.590 41.432	38.565 27	7.173 27.	.848 26.823	30.332	20.715 36	.969 13.764	35.496	20.086 23.	.645 31.3	351 14.772	33.043 8.16	9 3.799	21.018 31	1.252 23.638	24.998 21.264
125.000 7.979 10.638 16.696 24.967	22,206 26,720	2,911 1,933 1	1.487 6.127 16.430	14.026 10.2	27 14.025 1	1.898 3.488	2,575	8.183 17.44	0 25.027	28.938	5.105 22.7	706 9.178	14,757	3,108	3.725 10.	.506 17.653	29.551 28	8.083 5.2	295 27.908	9.932	3.649 7	475 20.615	15.581	3.931 5.0	016 8.3	61 2.174	5.462 13.66	0.782	11.007 5.	.641 12.231	21,702 6,155
88 390 0 297 0 708 1 035 2 886	6531 8201	0.002 0.002 1	1204 0.070 1.324	1.808 1.4	0 2.134 1	.948 0.379	0.002	0.141 0.92	4 2.259	3.302	0.293 5.5	18 3.677	9.417	0.326	0.003 0.7	743 1.323	2.655 3.	1923 01	652 3.730	0.529	0.680 0	.012 6.729	1.002	0.798 0.1	154 0.14	41 0.179	0.425 7.38	3 0.155	1547 0	168 0.841	2.791 1.387
62.500 0.231 0.005 0.011 0.653	2.220 2.932	0.000 0.000 0	0.095 0.000 0.010	0.415 0.5		.636 0.276		0.429 0.56			0.069 0.8		5.749	0.171		001 0.001		0.131 0.3	328 0.713	0.444		000 3.124			123 0.1		0.188 5.80	3 0.113	0.878 0.	.218 0.083	1.258 0.019
44 190 0.806 0.753 0.863 2.081			1.559 0.000 1.087			570 0.861		1 760 0.92			0.442 3.1					549 0.887			957 1 561	0.769		000 5.116	0.658		401 0.5		0.669 6.25			244 1.608	2.655 1.374
31.250 0.846 0.777 1.280 1.357			1.975 0.000 0.862	1.555 1.5	0 1.045 2	129 0.772		1.745 0.56			0.389 2.8		0.100			871 1.154			745 1.109	0.619		000 4399	0.000		337 0.4		0.549 5.23	0.215	5.001 0.	234 1.000	2.277 1.142
22.097 0.776 0.902 1.137 1.358	01110		2 055 0 000 1 009	1.502 1.11		247 0.833		1.745 0.50			0.303 2.0					905 1.189	0.000 -		764 1.070			000 4286			365 0.5		0.616 4.67	0.141	2.000 0.	258 1.882	2 076 1 186
15.625 0.902 1.130 1.285 1.948			2.282 0.000 1.337			.462 0.919		2 284 0.84			0.539 3.2					082 1.523			973 1.488	0.803		.000 4.230			367 0.5		0.792 4.95			333 2 342	2.083 1.731
11.049 1.263 1.324 1.821 2.180			2.832 0.000 1.498			.886 1.019		2.826 0.91			0.733 3.9					307 1.523			109 1.630	0.966		000 4.430	0.960		530 0.7		0.981 5.40			.412 2.821	2.693 1.810
7.813 1.523 1.748 2.348 2.609			2.852 0.000 1.498 3.975 0.000 2.029			774 1.208	0.000	2.626 0.91	3 1704		0.755 5.9							1207 1	383 2.161	0.966		000 5.075			694 1.0		1229 5.40		0.000.00	412 2.021	3.280 2.431
7.813 1.523 1.748 2.348 2.609 5.524 1.547 1.894 2.403 3.317					9 2.105 3			3.153 1.25	1.701		0.954 4.7		0.000		0.570 1.4	860 2.420 115 2.826			539 2.161	1.190		000 5.817	1.393				1.229 5.93		4.0411 0.	.494 3.750 509 4.192	3.280 2.431
																															0.000
3.906 1.293 1.524 1.954 2.944 2.762 0.911 0.878 1.285 1.615	1.551		3.818 0.000 2.304		5 2.145 3	.744 1.021	0.000	2.650 1.05	2.2.10		0.775 4.1				0.274 1.4	808 2.431	1.001 5.	3.609 1.2	246 2.205	0.963	1.000 0	.000 4.718	1.551		510 0.8		1.097 5.28	0.105	4.200 0.	.401 3.644	2.831 2.614
			2.657 0.000 1.367			.645 0.606		1.782 0.63			0.450 2.7					115 1.444		.477 0.	715 1.244			.000 3.087	0.820		311 0.4		0.652 3.53			.245 2.529	1.956 1.423
1.953 0.543 0.476 0.751 0.806			1.576 0.000 0.738	0.001 0.01		.552 0.338		0.969 0.36			0.237 1.5					638 0.810			385 0.670	0.302		.000 1.702	0.456		185 0.2		0.348 1.90			.139 1.472	1.123 0.756
1.381 0.315 0.411 0.502 0.764			0.996 0.000 0.675			.937 0.289		0.528 0.30			0.193 0.9					546 0.723			337 0.618			.000 1.020			155 0.2		0.281 1.08		0.515 0.	.113 0.903	0.636 0.725
0.977 0.217 0.371 0.379 0.674	0.520 0.055		0.785 0.000 0.584	0.000 0.0		.712 0.275	0.000	0.397 0.29			0.199 0.7				0.000 0.	487 0.613				0.252		.000 0.812			156 0.2		0.275 0.86			.121 0.702	0.453 0.602
0.691 0.188 0.265 0.291 0.403	0.823 0.747	0.000 0.000 0	0.714 0.000 0.362	0.326 0.2	7 0.344 0	.652 0.216	0.000	0.396 0.23	7 0.384	0.382	0.180 0.6	82 0.575	0.803	0.100	0.084 0.3	349 0.386	0.359 0.	0.592 0.3	245 0.351	0.206	0.242 0	.000 0.761	0.271	0.382 0.1	145 0.1	90 0.082	0.230 0.84	1 0.070	0.693 0.	.120 0.644	0.415 0.342
0.488 0.178 0.176 0.239 0.231	0.734 0.682	0.000 0.000 0	0.662 0.000 0.223	0.320 0.2	2 0.212 C	.618 0.153	0.000	0.409 0.17	3 0.239	0.222	0.143 0.6	29 0.559	0.713	0.086	0.074 0.2	239 0.247	0.240 0.).567 0.1	167 0.208	0.149	0.174 0	.000 0.716	0.187	0.245 0.1	122 0.1	50 0.070	0.172 0.82	6 0.069	0.651 0.	.109 0.604	0.408 0.205
0.345 0.165 0.136 0.214 0.210	0.636 0.603	0.000 0.000 0	0.591 0.000 0.202	0.303 0.2	1 0.172 0	.562 0.110	0.000	0.393 0.12	3 0.181	0.177	0.107 0.5	56 0.513	0.616	0.070	0.062 0.1	192 0.225	0.185 0.).522 0.1	121 0.168	0.106	0.132 0	.000 0.638	0.138	0.302 0.0	097 0.1	11 0.056	0.125 0.75	9 0.064	0.580 0.	.093 0.544	0.386 0.210
0.244 0.146 0.122 0.196 0.238	0.526 0.507	0.000 0.000 0	0.498 0.000 0.215	0.269 0.19	03 0.174 0	.481 0.086	0.000	0.350 0.08	B 0.172	0.186	0.077 0.4	65 0.438	0.510	0.054	0.050 0.1	175 0.236	0.168 0.	0.453 0.0	097 0.175	0.078	0.108 0	.000 0.533	0.115	0.346 0.0	074 0.0	81 0.043	0.091 0.64	B 0.056	0.482 0.	.076 0.460	0.345 0.237
0.173 0.118 0.107 0.167 0.231	0.399 0.391	0.000 0.000 0	0.382 0.000 0.197	0.217 0.1	62 0.165 0	.374 0.067	0.000	0.280 0.06	3 0.160	0.186	0.052 0.3	55 0.338	0.387	0.039	0.037 0.1	151 0.213	0.151 0.	0.358 0.0	080 0.171	0.058	0.087 0	.000 0.406	0.096	0.275 0.0	053 0.0	55 0.031	0.065 0.50	0 0.045	0.363 0.	.057 0.353	0.280 0.209
0.122 0.092 0.089 0.134 0.194	0.294 0.293	0.000 0.000 0	0.285 0.000 0.158	0.168 0.1	9 0.142 0	.281 0.054	0.000	0.215 0.04	6 0.138	0.165	0.036 0.2	63 0.253	0.286	0.029	0.028 0.1	123 0.171	0.129 0.).273 0.0	065 0.150	0.044	0.069 0	.000 0.301	0.078	0.175 0.0	038 0.0	39 0.022	0.048 0.37	3 0.036	0.266 0.	.043 0.262	0.218 0.158
0.086 0.060 0.063 0.090 0.133	0.184 0.185	0.000 0.000 C	0.179 0.000 0.105	0.108 0.0	85 0.100 C	.177 0.037	0.000	0.137 0.03	0.098	0.120	0.022 0.1	65 0.159	0.178	0.019	0.018 0.0	084 0.114	0.092 0.	0.175 0.0	045 0.107	0.029	0.047 0	.000 0.188	0.055	0.086 0.0	025 0.0	24 0.014	0.031 0.23	4 0.025	0.164 0.	.028 0.164	0.141 0.097
0.061 0.025 0.031 0.041 0.065	0.075 0.076	0.000 0.000 C	0.073 0.000 0.050	0.044 0.03	7 0.050 C	.072 0.018	0.000	0.056 0.01	4 0.049	0.061	0.010 0.0	67 0.064	0.072	0.009	0.009 0.0	041 0.055	0.047 0.	0.073 0.0	022 0.054	0.014	0.023 0	.000 0.077	0.027	0.031 0.0	012 0.0	11 0.007	0.015 0.09	4 0.012	0.066 0.	.014 0.067	0.059 0.044
0.043 0.003 0.005 0.006 0.010	0.009 0.009	0.000 0.000 0	0.009 0.000 0.008	0.005 0.00	05 0.008 0	.009 0.003	0.000	0.007 0.00	2 0.007	0.010	0.002 0.0	08 0.008	0.009	0.001	0.001 0.0	007 0.009	0.008 0.	0.009 0.0	004 0.009	0.002	0.004 0	.000 0.009	0.004	0.004 0.0	002 0.0	02 0.001	0.002 0.01	1 0.002	0.008 0.	.002 0.008	0.007 0.007
0.000 0.000 0.000 0.000	0.000 0.000	0.000 0.000 0	0.000 0.000 0.000	0.000 0.0	0 0.000 0	.000 0.000	0.000	0.000 0.00	0.000	0.000	0.000 0.0	00 0.000	0.000	0.000	0.000 0.0	000 0.000	0.000 0.	0.000 0.0	000 0.000	0.000	0.000 0	.000 0.000	0.000	0.000 0.0	000 0.0	00 0.000	0.000 0.00	0.000	0.000 0.	.000 0.000	0.000 0.000

Station	Treatment	Textural Group Classification	Folk and Ward Description	Folk and Ward Sorting	Mean µm	Mean phi	Sorting Coefficient	Skewness	Kurtosis	Major Se % Gravel	diment Fi % Sand	
ST01	Sediment	Gravelly Muddy Sand	Coarse Sand	Very Poorly Sorted	536.1	0.900	6.794	0.261	1.664	20.6%	67.5%	11.9%
ST02	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	237.7	2.073	2.696	-0.288	2.819	0.0%	86.8%	13.29
ST03	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	141.5	2.821	3.601	-0.564	2.714	0.0%	82.6%	17.49
ST04	Sediment	Muddy Sand	Very Fine Sand	Very Poorly Sorted	87.54	3.514	4.391	-0.645	2.369	0.0%	76.6%	23.49
ST05	Sediment	Muddy Sand	Very Coarse Silt	Very Poorly Sorted	54.74	4.191	5.496	-0.665	0.788	0.0%	58.5%	41.59
ST06	Sediment	Muddy Sand	Very Coarse Silt	Very Poorly Sorted	55.26	4.178	5.208	-0.684	0.852	0.0%	61.3%	38.79
ST07	Sediment	Sand	Medium Sand	Moderately Well Sorted	321.7	1.636	1.537	0.180	0.989	0.1%	99.9%	0.0%
ST08	Sediment	Slightly Gravelly Sand	Medium Sand	Moderately Well Sorted	381.0	1.392	1.559	0.060	0.959	0.2%	99.8%	0.0%
ST09	Sediment	Muddy Sand	Very Fine Sand	Very Poorly Sorted	73.82	3.760	5.807	-0.742	0.787	0.0%	67.6%	32.39
ST10	Sediment	Sand	Medium Sand	Moderately Well Sorted	305.2	1.712	1.500	0.044	0.935	0.0%	100.0%	0.0%
ST11	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	146.7	2.769	3.831	-0.537	2.410	0.0%	82.5%	17.59
ST12	Sediment	Muddy Sand	Fine Sand	Very Poorly Sorted	128.8	2.957	4.408	-0.598	2.039	0.0%	79.3%	20.69
ST13	Sediment	Slightly Gravelly Muddy Sand	Fine Sand	Poorly Sorted	156.0	2.681	3.928	-0.653	2.026	0.3%	81.0%	18.69
ST14	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	133.3	2.907	3.499	-0.656	2.518	0.0%	81.5%	18.49
ST15	Sediment	Muddy Sand	Very Fine Sand	Very Poorly Sorted	73.24	3.771	5.562	-0.741	0.801	0.1%	66.8%	33.19
ST16	Sediment	Slightly Gravelly Muddy Sand	Medium Sand	Poorly Sorted	295.3	1.760	2.496	-0.267	2.722	0.2%	89.6%	10.29
ST17	Sediment	Slightly Gravelly Sand	Medium Sand	Moderately Well Sorted	340.4	1.555	1.529	0.099	0.926	0.2%	99.8%	0.0%
ST18	Sediment	Muddy Sand	Very Fine Sand	Very Poorly Sorted	97.80	3.354	4.962	-0.673	1.285	0.1%	74.7%	25.39
ST19	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	209.3	2.256	2.319	-0.276	3.522	0.1%	89.9%	10.09
ST20	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	137.6	2.861	3.029	-0.597	3.515	0.0%	83.5%	16.59
ST21	Sediment	Muddy Sand	Very Fine Sand	Poorly Sorted	96.58	3.372	3.749	-0.653	3.359	0.0%	79.9%	20.19
ST22	Sediment	Sand	Medium Sand	Poorly Sorted	299.8	1.738	2.186	-0.378	2.656	0.1%	93.0%	7.0%
ST23	Sediment	Muddy Sand	Very Coarse Silt	Very Poorly Sorted	60.23	4.053	5.357	-0.651	0.769	0.0%	61.0%	39.09
ST24	Sediment	Muddy Sand	Very Fine Sand	Very Poorly Sorted	80.38	3.637	5.646	-0.682	0.799	0.0%	67.3%	32.79
ST25	Sediment	Muddy Sand	Very Coarse Silt	Very Poorly Sorted	46.93	4.413	5.682	-0.397	0.791	0.0%	52.7%	47.39
ST26	Sediment	Slightly Gravelly Sand	Medium Sand	Moderately Well Sorted	293.9	1.766	1.511	0.026	1.170	0.2%	96.5%	3.2%
ST27	Sediment	Sand	Medium Sand	Moderately Well Sorted	284.8	1.812	1.461	0.025	1.107	0.1%	97.0%	2.9%
ST28	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	206.0	2.279	2.513	-0.412	3.924	0.0%	85.3%	14.69
ST29	Sediment	Muddy Sand	Very Fine Sand	Poorly Sorted	106.1	3.237	3.940	-0.684	3.440	0.0%	80.6%	19.49
ST30	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	160.9	2.636	2.509	-0.504	3.601	0.0%	84.5%	15.5%
ST31	Sediment	Muddy Sand	Very Fine Sand	Very Poorly Sorted	63.28	3.982	4.930	-0.729	0.839	0.0%	67.5%	32.59
ST32	Sediment	Slightly Gravelly Muddy Sand	Medium Sand	Poorly Sorted	251.1	1.994	2.389	-0.403	3.269	0.2%	88.4%	11.39
ST34	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	125.9	2.990	3.572	-0.510	3.061	0.1%	81.6%	18.39
ST35	Sediment	Sand	Medium Sand	Poorly Sorted	259.6	1.946	2.492	-0.212	2.360	0.0%	90.7%	9.3%
ST36	Sediment	Slightly Gravelly Muddy Sand	Medium Sand	Poorly Sorted	282.2	1.825	2.406	-0.350	3.204	0.6%	89.2%	10.29
ST37	Sediment	Sand	Medium Sand	Moderately Well Sorted	269.2	1.893	1.441	0.134	1.081	0.0%	100.0%	0.0%
ST38	Sediment	Muddy Sand	Very Coarse Silt	Very Poorly Sorted	41.52	4.590	5.162	-0.395	0.747	0.0%	50.1%	49.9%
ST39	Sediment	Muddy Sand	Fine Sand	Poorly Sorted	223.4	2.162	2.535	-0.266	2.963	0.0%	88.9%	11.19
ST40	Sediment	Muddy Sand	Very Fine Sand	Very Poorly Sorted	99.50	3.329	4.987	-0.794	1.858	0.0%	75.4%	24.69
ST41	Sediment	Slightly Gravelly Sand	Medium Sand	Moderately Sorted	302.9	1.723	1.901	-0.136	1.710	0.3%	94.4%	5.3%
ST42	Sediment	Slightly Gravelly Sand	Medium Sand	Poorly Sorted	271.0	1.884	2.288	-0.186	2.650	0.2%	92.1%	7.6%
ST43	Sediment	Slightly Gravelly Sand	Medium Sand	Moderately Sorted	381.4	1.391	1.638	-0.052	0.921	0.3%	97.0%	2.8%
ST44	Sediment	Slightly Gravelly Sand	Medium Sand	Poorly Sorted	261.6	1.934	2.346	-0.238	3.256	0.2%	90.2%	9.6%
ST45	Sediment	Sandy Mud	Very Coarse Silt	Very Poorly Sorted	35.50	4.816	5.651	-0.253	0.799	0.0%	44.4%	55.69
ST46	Sediment	Slightly Gravelly Sand	Medium Sand	Moderately Well Sorted	457.2	1.129	1.537	-0.088	1.106	0.2%	97.4%	2.4%
ST47	Sediment	Muddy Sand	Very Fine Sand	Very Poorly Sorted	68.08	3.877	5.696	-0.692	0.714	0.0%	60.8%	39.29
ST48	Sediment	Sand	Medium Sand	Moderately Well Sorted	287.5	1.798	1.593	0.104	1.122	0.1%	95.9%	4.0%
ST49	Sediment	Muddy Sand	Very Fine Sand	Very Poorly Sorted	77.32	3.693	5.722	-0.717	0.834	0.0%	69.0%	30.99
ST50	Sediment	Slightly Gravelly Muddy Sand	Very Fine Sand	Very Poorly Sorted	83.49	3.582	5.055	-0.584	1.259	0.5%	71.7%	27.79
ST50	Sediment	Slightly Gravelly Muddy Sand	Very Fine Sand	Very Poorly Sorted	122.0	3.035	4.329	-0.737	2.517	0.3%	79.4%	20.39
5151	Jeanneint	Singinary Graverry Mudduy Salla			122.0	5.055	7.525	0.757	2.517	0.570	1 J.+/0	1 20.3

 ons

 Mud

 .9%

 .2%

 .4%

 .5%

 .7%

 0%

 .5%

 .7%

 0%

 .5%

 .6%

 .4%

 .5%

 .6%

 .3%

 0%

 .3%

 0%

 .3%

 .0%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

 .3%

Appendix X - Raw PCBs

		Units	mg/Kg (Dry Weight)																								
		Method No	ASC/SOP/302																								
	L	imit of Detection	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
		Accreditation	MMO*	UKAS/MMO																							
Client Reference:	SOCOTEC Ref:	Matrix	PCB 101	PCB 105	PCB 110	PCB 118	PCB 128	PCB 138	PCB 141	PCB 149	PCB 151	PCB 153	PCB 156	PCB 158	PCB 170	PCB 18	PCB 180	PCB 183	PCB 187	PCB 194	PCB 28	PCB 31	PCB 44	PCB 47	PCB 49	PCB 52	PCB 66
FLOMOR0222 - 01 (A)	MAR01453.001	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008
FLOMOR0222 - 02 (A)	MAR01453.002	Sediment	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008
FLOMOR0222 - 05 (A)	MAR01453.003	Sediment	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	0.00012	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	0.00008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	0.00010
FLOMOR0222 - 11 (A)	MAR01453.004	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008
FLOMOR0222 - 18 (A)	MAR01453.005	Sediment	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.00008
FLOMOR0222 - 20 (A)	MAR01453.006	Sediment	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008
FLOMOR0222 - 22 (A)	MAR01453.007	Sediment	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.00008	<0.00008	<0.0008	0.00009
FLOMOR0222 - 23 (A)	MAR01453.008	Sediment	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008
tified Reference Material	Quasimeme QOR149	<i>II</i>	72	72	83	84	88	102	112	73	65	93	91	98	86	72	84	109	93	71	72	90	98	88	98	95	94
		QC Blank	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	< 0.00008	<0.00008	<0.00008	<0.0008	<0.00008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008
FLOMOR0222 - 26 (A)	MAR01453.009	Sediment	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008
FLOMOR0222 - 31 (A)	MAR01453.010	Sediment	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	0.00009	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	0.00009	0.00008	<0.0008	<0.0008	<0.00008	<0.0008	0.00010
FLOMOR0222 - 32 (A)	MAR01453.011	Sediment	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008
FLOMOR0222 - 35 (A)	MAR01453.012	Sediment	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008
FLOMOR0222 - 38 (A)	MAR01453.013	Sediment	<0.0008	<0.00008	<0.0008	0.00013	<0.0008	0.00014	<0.0008	<0.0008	<0.0008	0.00015	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	0.00010	0.00009	<0.0008	0.00019	<0.00008	<0.0008	0.00010
FLOMOR0222 - 40 (A)	MAR01453.014	Sediment	<0.0008	<0.00008	<0.0008	0.00011	<0.0008	0.00008	<0.0008	<0.0008	<0.0008	0.00012	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	0.00010	<0.00008	0.00009	0.00008	<0.0008	<0.0008	<0.00008	<0.0008	0.00010
FLOMOR0222 - 43 (A)	MAR01453.015	Sediment	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008
FLOMOR0222 - 44 (A)	MAR01453.016	Sediment	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008
FLOMOR0222 - 48 (A)	MAR01453.017	Sediment	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008
FLOMOR0222 - 49 (A)	MAR01453.018	Sediment	<0.0008	<0.00008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008
tified Reference Material	Quasimeme QOR149	(87	79	98	103	96	99	123~	98	93	102	77	114	77	77	86	92	99	62	71	87	83	79	90	88	93
		QC Blank	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008
	MAR01453.019	Sediment	<0.0008	<0.00008	<0.00008	0.00009	<0.0008	0.00009	<0.0008	<0.0008	<0.0008	0.00011	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	0.00008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	0.00009
tified Reference Material	Quasimeme QOR149	II	81	89	91	93	90	104	120~	95	80	98	84	101	80	82	91	106	100	65	73	87	88	83	92	91	94
		QC Blank	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008	<0.00008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008
	MAR01456.001	Sediment	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008
tified Reference Material	Quasimeme QOR149		81	89	91	93	90	104	120~	95	80	98	84	101	80	82	91	106	100	65	73	87	88	83	92	91	94
		QC Blank	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.00008	<0.0008	<0.0008	<0.00008	<0.00008	<0.0008	<0.0008	<0.0008	<0.00008	<0.0008	<0.0008

Appendix X - Raw Physical Data

		Units	% M/M	% M/M
		Method No	WSLM59*	LOI(%MM)*
		Accreditation	UKAS/MMO	Ν
	-		Total Organic Carbon	LOI @ 450
Client Reference:	SOCOTEC Ref:	Matrix	-	-
FLOMOR0222 - 01 (A)	MAR01453.001	Sediment	0.17	1.3
FLOMOR0222 - 02 (A)	MAR01453.002	Sediment	0.11	1.0
FLOMOR0222 - 05 (A)	MAR01453.003	Sediment	0.33	1.9
FLOMOR0222 - 11 (A)	MAR01453.004	Sediment	0.18	1.2
FLOMOR0222 - 18 (A)	MAR01453.005	Sediment	0.12	1.0
FLOMOR0222 - 20 (A)	MAR01453.006	Sediment	0.20	1.3
FLOMOR0222 - 22 (A)	MAR01453.007	Sediment	0.36	2.2
FLOMOR0222 - 23 (A)	MAR01453.008	Sediment	0.09	0.9
FLOMOR0222 - 26 (A)	MAR01453.009	Sediment	0.07	0.7
FLOMOR0222 - 31 (A)	MAR01453.010	Sediment	0.32	1.9
FLOMOR0222 - 32 (A)	MAR01453.011	Sediment	0.08	0.9
FLOMOR0222 - 35 (A)	MAR01453.012	Sediment	0.19	1.3
FLOMOR0222 - 38 (A)	MAR01453.013	Sediment	0.46	2.5
FLOMOR0222 - 40 (A)	MAR01453.014	Sediment	0.36	2.1
FLOMOR0222 - 43 (A)	MAR01453.015	Sediment	0.07	0.8
FLOMOR0222 - 44 (A)	MAR01453.016	Sediment	0.14	1.1
FLOMOR0222 - 48 (A)	MAR01453.017	Sediment	0.09	0.9
FLOMOR0222 - 49 (A)	MAR01453.018	Sediment	0.08	0.7
FLOMOR0222 - 50 (A)	MAR01453.019	Sediment	0.34	2.0
FLOMOR0222 - 42 (B)	MAR01456.001	Sediment	0.19	1.5

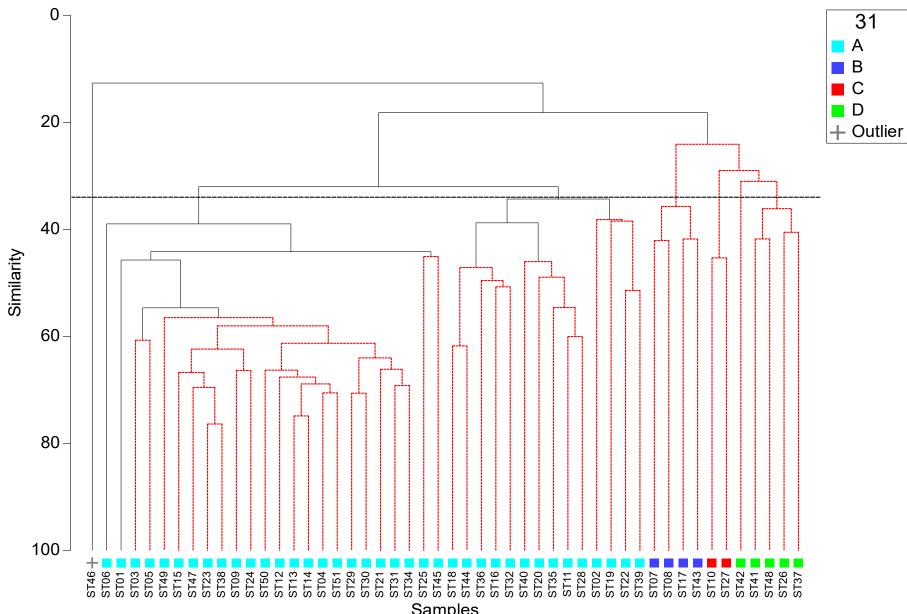
Appendix X - Raw PAH & THC

				µg/Kg (Dry Weight)									µg/Kg (Dry Weight)							1 2 2 2 2 2		µg/Kg (Dry Weight)			
			ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/305
	LIM	it of Detection Accreditation	I UKAS/MMO	UKAS/MMO	UKAS/MMO	UKAS/MMO	UKAS/MMO	I UKAS/MMO	I UKAS/MMO	I UKAS/MMO	UKAS/MMO	MMO	MMO	MMO	MMO	MMO	I UKAS/MMO	UKAS/MMO	UKAS/MMO	I UKAS/MMO	I UKAS/MMO	MMO	I UKAS/MMO	I UKAS/MMO	MMO
Client Reference: SOC	OTEC Ref:	Matrix				BAA	BAP	BBF	BENZGHIP	BEP	BKF	C1N	C1PHEN	C2N	C3N	CHRYSENE	DBENZAH	FLUORANT	FLUORENE	INDPYR	NAPTH	PERYLENE	PHENANT	PYRENE	THC
		Sediment	<1	<1	1.40	4.34	5.97	8.61	7.38	8.05	3.93	9.20	12.3	17.5	11.1	544	1.24	8.10	1.58	6.75	4.11	1.91	8.32	8.14	9.07
	R01453.002	Sediment	<1	<1	<1	2.48	3.45	5.37	4.89	5.03	2.63	5.82	5.22	11.8	6.27	3.07	<1	4.86	1.11	3 34	2.46	1.12	4.10	5.10	3.41
FLOMOR0222 - 05 (A) MAR	R01453.003	Sediment	1.94	2.62	6.05	16.9	24.3	31.6	28.6	29.1	15.4	25.6	34.0	31.6	25.2	19.5	4.60	32.7	4.79	26.3	8.98	9.06	30.0	32.7	18.3
FLOMOR0222 - 11 (A) MAR	R01453.004	Sediment	<1	<1	1.68	4.69	6.63	9.43	8.42	9.38	4.47	9.58	12.7	13.7	11.2	6.35	1.43	8.67	1.57	7.50	3.68	2.23	8.80	9.09	6.52
FLOMOR0222 - 18 (A) MAR	R01453.005	Sediment	<1	<1	<1	2.07	3.16	4.07	4.98	4.56	2.05	4.18	5.04	7.54	5.22	2.68	<1	4.43	<1	2.58	2.08	1.06	3.89	4.35	3.33
FLOMOR0222 - 20 (A) MAR	R01453.006	Sediment	<1	<1	1.73	4.86	6.62	9.66	8.27	9.58	5.00	9.28	18.3	17.1	16.3	6.60	1.36	8.96	1.71	7.57	3.91	2.47	10.8	10.1	4.50
FLOMOR0222 - 22 (A) MAR	R01453.007	Sediment	2.24	2.20	5.54	17.1	25.1	33.3	29.3	31.1	19.7	25.6	35.9	35.5	30.0	21.4	4.89	31.1	4.40	27.6	10.2	8.98	26.4	32.3	33.7
FLOMOR0222 - 23 (A) MAR	R01453.008	Sediment	<1	<1	<1	2.85	4.23	5.69	4.82	5.79	3.74	5.14	5.40	11.1	5.57	3.53	<1	5.22	<1	4.93	2.36	1.58	4.50	5.46	7.22
		Sediment	<1	<1	<1	<1	<1	1.78	1.45	1.85	<1	2.05	2.49	6.05	2.10	1.15	<1	1.77	<1	1.24	1.06	<1	1.76	1.86	1.35
rtified Reference Material Quasin	meme QPH106M		91	132	93	87	92	69	86	87	94	98	79	49	87	88	77	93	85	79	82	76	87	93	104~
		QC Blank	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	R01453.010	Sediment	2.43	2.96	5.37	18.3	26.8	34.7	30.2	32.3	20.0	29.9	32.9	44.0	28.9	22.2	5.21	33.8	5.63	28.0	12.5	9.33	28.3	34.7	23.8
	R01453.011	Sediment	<1	<1	<1	1.08	1.49	2.21	1.71	2.40	1.29	2.43	3.65	5.06	3.62	1.52	<1	2.29	<1	1.54	1.27	<1	2.29	2.44	1.45
	R01453.012	Sediment	1.23	1.09	2.42	7.71	10.6	13.5	10.9	12.9	5.79	10.5	12.9	14.0	10.9	8.86	1.99	15.7	1.92	9.89	4.84	2.81	11.4	15.6	7.18
	R01453.013	Sediment	2.74	3.26	6.64	20.8	30.5	40.0	35.0	38.3	22.4	33.9	40.1	47.8	37.4	24.4	5.98	40.1	6.29	31.8	15.2	11.1	33.6	40.0	27.3
	R01453.014	Sediment	2.45	2.89	5.23	17.3	25.7	33.6	29.4	31.8	18.0	29.7	29.7	42.5	26.7	18.8	5.30	32.1	5.43	27.6	16.6	8.87	25.8	32.8	18.3
	R01453.015	Sediment	<1	<1	<1	<1	<1	1.11	<1	1.11	<1	1.62	1.34	2.81	1.26	<1	<1	1.02	<1	<1	1.11	<1	1.01	1.23	1.00
	R01453.016 R01453.017	Sediment	<1	<1	<1	1.05	1.70	2.66	2.05	2.53	1.10	2.80	2.93	8.50	2.81	1.45	<1	2.25	<1	1.92	2.90	<1	2.13	2.38	1.42
	R01453.017 R01453.018	Sediment Sediment	<1	<1	1.09	2.84	4.34	6.26	5.00	6.29	3.13	5.06	5.95	8.05	4.79	3.88	<1	5.85	<1	4.02	2.57	1.37	4.86	5.88	4.76
	101133.010	Sediment	2.10	2.08	4.69	14.1	20.3	25.3	22.0	24.3	15.0	22.4	23.0	30.3	20.6	4.00	3.73	27.3	4.37	20.2	10.3	6.94	20.8	28.3	16.6
rtified Reference Material Quasin	101135.015		2.10	2.06	4.69	74	20.5	23.3	22.0	24.5	80	01	23.0	50.5	20.0	79	5.75	27.5	4.57	20.2	79	73	20.0	20.5	10.0
		OC Blank	12 <1	152	65 <1	/4 <1	/4	/4 <1	02 <1	60 <1	 ≤1	91 <1	<1 <1	50 <1	96 <1	/9 <1	/4 <1	65	61 <1	67	/9 <1	/3 <1	// <1	<1	<1
FLOMOR0222 - 42 (B) MAR	R01456 001	Sediment	<1	<1	1.01	3.03	4 39	5.93	4.80	5.93	3.36	5.29	6.63	13.9	5.30	477	1.14	6.24	<1	4.01	2.67	134	5.57	633	3.99
rtified Reference Material Quasin			72	132	85	74	74	74	82	80	80	91	71	56	96	79	74	83	81	67	79	73	77	86	107~
		QC Blank	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

Appendix X - Raw Trace Metals

		Units				mg/Kg (Dry \	Veight)			
		Method No				ICPMS	5*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS/MMO	UKAS/MMO	UKAS/MMO	UKAS/MMO	UKAS/MMO	UKAS/MMO	UKAS/MMO	UKAS/MMO
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Mercury (Hg)	Nickel (Ni)	Lead (Pb)	Zinc (Zn)
FLOMOR0222 - 01 (A)	MAR01453.001	Sediment	8.7	<0.04	12.2	6.5	0.06	10.4	12.2	32.3
FLOMOR0222 - 02 (A)	MAR01453.002	Sediment	5.0	<0.04	8.4	5.2	0.05	6.5	8.8	28.6
FLOMOR0222 - 05 (A)	MAR01453.003	Sediment	5.9	0.08	14.7	8.7	0.11	11.2	15.4	47.8
FLOMOR0222 - 11 (A)	MAR01453.004	Sediment	4.6	<0.04	8.7	6.0	0.06	6.3	9.3	28.8
FLOMOR0222 - 18 (A)	MAR01453.005	Sediment	5.7	<0.04	8.1	5.7	0.05	6.0	8.0	24.3
FLOMOR0222 - 20 (A)	MAR01453.006	Sediment	5.0	0.06	9.2	6.8	0.06	7.3	10.0	29.8
FLOMOR0222 - 22 (A)	MAR01453.007	Sediment	5.8	0.08	13.5	9.0	0.15	10.8	15.4	47.1
FLOMOR0222 - 23 (A)	MAR01453.008	Sediment	4.9	0.05	7.8	11.4	0.06	5.8	7.9	22.4
FLOMOR0222 - 26 (A)	MAR01453.009	Sediment	8.3	0.05	6.6	4.7	0.04	5.3	8.6	27.2
FLOMOR0222 - 31 (A)	MAR01453.010	Sediment	6.7	<0.04	14.7	7.0	0.12	10.8	16.5	47.4
FLOMOR0222 - 32 (A)	MAR01453.011	Sediment	7.1	<0.04	7.1	3.9	0.03	5.1	8.1	26.0
FLOMOR0222 - 35 (A)	MAR01453.012	Sediment	5.8	<0.04	9.8	6.3	0.05	7.2	11.5	32.8
FLOMOR0222 - 38 (A)	MAR01453.013	Sediment	6.0	0.07	16.8	10.2	0.12	12.7	18.2	52.2
FLOMOR0222 - 40 (A)	MAR01453.014	Sediment	6.4	<0.04	15.9	9.5	0.12	11.5	16.1	46.5
FLOMOR0222 - 43 (A)	MAR01453.015	Sediment	9.2	<0.04	6.2	3.7	0.01	5.3	6.4	21.3
FLOMOR0222 - 44 (A)	MAR01453.016	Sediment	6.5	<0.04	6.4	3.9	0.03	5.0	8.5	25.0
FLOMOR0222 - 48 (A)	MAR01453.017	Sediment	6.0	<0.04	6.8	4.0	0.05	4.8	7.6	21.0
FLOMOR0222 - 49 (A)	MAR01453.018	Sediment	4.6	0.05	7.5	5.1	0.05	5.4	8.3	23.8
FLOMOR0222 - 50 (A)	MAR01453.019	Sediment	6.1	0.07	14.8	7.9	0.10	10.3	15.7	44.1
FLOMOR0222 - 42 (B)	MAR01456.001	Sediment	4.6	<0.04	7.2	5.5	0.02	5.6	7.3	22.1
Certified Refe	erence Material SET	OC 774 (% Recovery)	100	101	108	100	108	105	99	100
		QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

Appendix X - Raw Organotins


		Units	mg/Kg (Di	ry Weight)
		Method No		OP/301
		Limit of Detection	0.001	0.001
		Accreditation	UKAS/MMO	UKAS/MMO
Client Reference:	DCOTEC Re	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
FLOMOR0222 - 01 (A)	MAR0145 3.001	Sediment	<0.005	<0.005
FLOMOR0222 - 02 (A)	MAR0145 3.002	Sediment	<0.005	<0.005
FLOMOR0222 - 05 (A)	MAR0145 3.003	Sediment	<0.005	<0.005
FLOMOR0222 - 11 (A)	MAR0145 3.004	Sediment	<0.005	<0.005
Certified Reference N	Aaterial QSP0	77MS(% Recovery)	63	55
		QC Blank	<0.001	<0.001
FLOMOR0222 - 18 (A)	MAR0145 3.005	Sediment	<0.005	<0.005
FLOMOR0222 - 20 (A)	MAR0145 3.006	Sediment	<0.005	<0.005
FLOMOR0222 - 22 (A)	MAR0145 3.007	Sediment	<0.005	<0.005
FLOMOR0222 - 23 (A)	MAR0145 3.008	Sediment	<0.005	<0.005
FLOMOR0222 - 26 (A)	MAR0145 3.009	Sediment	<0.005	<0.005
FLOMOR0222 - 31 (A)	MAR0145 3.010	Sediment	<0.005	<0.005
FLOMOR0222 - 32 (A)	MAR0145 3.011	Sediment	<0.005	<0.005
FLOMOR0222 - 35 (A)	MAR0145 3.012	Sediment	<0.005	<0.005
FLOMOR0222 - 38 (A)	MAR0145 3.013	Sediment	<0.005	<0.005
FLOMOR0222 - 40 (A)	MAR0145 3.014	Sediment	<0.005	<0.005
Certified Reference N	Aaterial QSP0	, , , , , ,	153	120
		QC Blank	<0.001	<0.001
FLOMOR0222 - 43 (A)	MAR0145 3.015	Sediment	<0.005	<0.005
FLOMOR0222 - 44 (A)	MAR0145 3.016	Sediment	<0.005	<0.005
FLOMOR0222 - 48 (A)	MAR0145 3.017	Sediment	<0.005	<0.005
FLOMOR0222 - 49 (A)	MAR0145 3.018	Sediment	<0.005	<0.005
FLOMOR0222 - 50 (A)	MAR0145 3.019	Sediment	<0.005	<0.005
Certified Reference N	Aaterial QSP0		112	70
		QC Blank	<0.001	<0.001
FLOMOR0222 - 42 (B)	MAR0145 6.001	Sediment	<0.005	<0.005
Certified Reference N	Aaterial QSP0		112	70
		QC Blank	<0.001	<0.001

soto	matrixID aphialD original 100630 102788 100115 138474 100067 141433 100054 141435	Juvenile Count Count Count Count	0 0 0 0 0 0	0 0 0 0 0 0	0	0 0 0 0 0 1	0 0 0	0	0 0 2 0 0 0	0 0 2 0 0 0	0	0 0		0 0 1 4 1 1	1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 1 0 6 0	0 0 2 0 2 0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 0 0	0 6 15	0 0 0 0 1 0	0 0 0 0 1	0	0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 0 0	0	0
1100	100121 141436 100130 146469	Count Count Count	3 0 0 0	0 0	0	1 0 0 1 0 0	0 2 0 0 0 0	0	0 0	0 1 0 0 0 0	3 0	0 0		0 0	0	0 2 0 0 0 0	0 2 0 0 0 0	0 0	0 0	3 0	0 2 0 0 0 0	0 0	0	0 2 0 0 0 0	0 0	0	0 0	0 2 0 0 1	0	0 4 0 0 0 0	0	0
inata tum	100997 138992 101301 102495 100188 236130	Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	1 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
	100869 138691 100016 1360	Count	0 0	0 0 0 0	0	0 0 0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0 0 0	0	0 0	0 0 1 0 0 0	0	0 0	0	0
3	100092 10194 101060 130343 100094 111604	Eggs Count Count	1 0	0 0	0	0 0	0 0	1	0 0	0 0	0	0 0		0 0	0	0 0	0 0	2 0	0 1	0	1 0	1 0	0	0 0	0 0	0	0 0	4 0	0	0 0	0	0
	100094 111604 100229 101445 100309 101445	Presence / Absence Juvenile Count Damaged Count	0 0	0 0	0 0	0 0 0 0	0 0	0	0 0 0 0	0 0	0	0 0		0 0 0 0	0	0 0	0 0	0 0	0 0	0	0 0 0 0	0 0 0 0	0	0 0	0 0	0	0 0	0 0	0	0 0 0 1 0 0	0	0
nia 	100119 101891 100392 101928	Count Count	0 0	0 0	0	0 0	0 0	0	0 0	1 0	0	0 0		0 0	0	0 0	1 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
nts semi me	100053 101930 100219 129781 100058 152448	Aggregate Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0			0	0 0	0 1	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
	100048 125080 100139 123206	Count Juvenile Count	32 1 0 1	57 155 0 5	66 0	39 0 0 0	0 74	1 0	22 81 1 5	162 218 2 5	130	2 0		0 8	84	0 97 3 16	87 67 21 0	0 1 1 2	10 68 0 5	52 9 4	98 17 5 1	157 14 3 0	3	0 80 0 15	6 10 2 6	1	0 0	2 53		100 0	31 1	124
rhinta	102274 123206 100281 2 100338 131107	Eqqs Presence / Absence Eqqs Presence / Absence		0 0	0	0 P 0 0	0 0	P P	0 0	0 0	0	0 0		P 0 P P	0	0 0	0 0	0 0 0 P	0 0 P 0	0	0 0	0 0	0 P	P 0	0 0	0 P	0 0 0 P	0 0 P 0	0 P	0 0	0	0
	100122 101368 100110 1839 100990 123080	Female Count Juvenile Count	1 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
laris	100933 123867	Juvenile Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 1	0 0	0	0 0	0	0
orts	101784 123867 101188 478336 100100 106215	Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	1 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
u is	100274 103058 100429 103059	Count Count	0 0	0 0	0	0 0	1 0	3	0 0	0 0	0	0 2		0 0	0	0 0	0 0	2 2 0 2	0 0	0	0 1	0 0	0	0 0	4 0	0	2 1	0 0	0	0 0	0	0
	100273 103076 103621 103076 100643 110445	Fragment Presence / Absence Count		0 0	0	0 0	0 0	0	P 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	4 0 0 0	0	0 0	0 0	0	0 0	0	0
	103625 1195 103626 1195	Female Count Male Count	0 0	0 0	1	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
ranea	100134 107729 103623 107729 100263 1606	Count Fragment Presence / Absence Presence / Absence	0 0 0 0	0 0	2	2 0 0	0 3	0	0 2 0	4 3 0 0	3	1 0 0 0		0 0	0	0 1 0	2 0 0 0	0 0	0 1 0 0	0	2 1 0 0	0 0	0 P	0 1	1 0 0	0	1 0 0 0	1 3 0 0	0	1 0 0	0	0
ei .	100263 1606 100899 100684 100026 152217	Juvenile Count Count	0 0	0 0	0	0 0	0 1	0	0 0	1 0	0	0 0			0	0 0	1 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 1	1 0	0	0 0	0	0
ri dica	103426 152217 100175 336485	Fragment Presence / Absence Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		P 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
ranea anea ri ri ri ri ri ca m m nu s ca m s ca s ca s ca s ca s ca s ca s	100076 141908 100344 101669 100245 117368	Female Count Presence / Abserve	0 1 0 P 0	0 0	0	2 0 0 0 P 0	0 0	0	0 0	0 0	0	0 0		0 0 0 0	0	- 0 0 0 0 0	0 0 0 0	0 0	0 0	0	. 1 0 0 0 0	2 0 0 0	0	0 0	2 0 0 0	0	0 0	0 0	0	0 0	0	0
-	100208 111351 100038 1080	Presence / Absence Count	P 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0 0 0	0	0 0	0 0	0 0	0 0	0	0 P 0 0	P 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
inus Id	100860 1080 101080 107277 100069 139476	Parasite Count Count Count	0 0 1 2 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	1	0 0 1 1	0 0	4 0	0 0	0	0 0	1 0 0 0	0	0 0	0 0	0	0 0	0 0	0	0 0 0 2 2 2	0	0
	101505 1130 100182 130100	Megalopa Count Count	0 0	0 0 0	0	0 0 2	0 0	0	0 0	0 0	0	1 0		0 0 0 0	0	0 0 0 0	0 0 3 2	0 1 0	0 0	0	0 0	0 0	1	0 0	0 0	1	0 0	1 0	0	0 0 2 0	0	0
datum Ilus	100248 138636 100242 124392 100349 124273	Juvenile Count Count	0 0	0 0	0	0 0	1 0 0 1	0	0 0	0 0	3	0 1		0 0	6	0 0 0	0 0	0 0	0 0	4	0 1 12 0 0 3	0 0 4 0	0	0 0	0 0	0	0 0 2 0	0 0	0	0 0	3	0
	100349 124273 100042 100665 102402 130738	Count	0 0	0 0	0	0 0	0 2	0	0 1 0 0	1 1 0	1 0	1 2		0 0	0	13 0 0 0	- d 4 7 0 0	0 0	1 2	5	0 0	0 1	0	0 0	- 0 3 4 0 0	0	0 0	0 0	0	3 2 1 0	2	0
	100044 138333 103264 138333	Juvenile Count Juvenile, F Presence / Absence	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 1 0 0	0 0	0	0 0	0 0	0	0 0 P 0	0 0	0	0 0	0 0	0	0 0	0	0
	102167 140733 100202 1820 100466 130616	Count Aggregate Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0			0	0 0 0 0	0 0	0 1	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
la	100333 110535 100616 118855	Count Count	0 0	0 0	0	1 0 0	0 0	0	0 0	1 0	0	0 0		0 0	0	0 3	0 0	0 0	0 1	0	1 0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0 0	0	0
	100200 151894 100241 146907 100125 16352	Count Count Presence / Abserve	0 0 P P	0 0 P P	0 0 P	u 1 0 0 0 P	0 0 0 P	0	2 1 0 0 0 P	0 0 P P	0	0 0		0 0 0 0	0 P	0 0 0 0	0 0 0 0	0 0	0 0 P P	0 P	- 0 0 0 P 0	0 0 P 0	0 1 P	0 0	0 0 P P	0	0 0	0 0	0 P	- 0 0 0 P P	0 P	0 P
ata	100259 1692 100052 146950 100137 140870	Presence / Absence Count	0 0	0 0	0	0 P 0 0	0 0	р 0	0 0	0 0	0	a a		0 0	0	0 0	0 0	0 P	0 0	0	0 0	0 0	P 0	0 0	P 0	P 0	0 P 0 0	P 0	P 0	0 P 0 0	0	0
	100137 140870 100018 129296 100149 130116	Fragment Presence / Absence Count		0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 P	0	0 0	0	0
	100085 130126 100129 130131	Count	0 0	0 0	0	0 0 0 0	0 0	0	0 0	0 0	0	1 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 1	0 0	0	0 0	0	0
ni a) vulgaris vulgaris des	100124 130136 100216 410724 100275 107292	Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 1		0 0	0	0 0	0 0	0 0	0 0	0	0 0	1 0 0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
	100068 130140 100192 571832	Count	0 0 2 0	1 0 0 0	0	0 0	0 0	0	0 1 0	0 0	0	0 0		2 0	0	2 1 0 0	0 0	0 0	0 1	1 0	0 0	0 4 0	1 0	0 0	1 0 1 0	0	0 0	1 0	0	1 0 0	0	1 0
	100192 571832 100127 102960 100297 102972 100625 102570	Count Count	1 2 0 0	0 0	2	0 0	0 1	0	0 1	0 0	0	0 0		3 0	0	0 1	1 0	0 0	0 6	0	0 1	5 0 0 0	0	0 1	1 0	0	0 0	0 0	0	0 0	0	0
culatus	100140 140129	Count Count Presence / Absence	0 0	0 0	4	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	1	0 0 2 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	1	0
nte oniŭ sanice eta sta sta sta sta sta sta sta sta sta s	101459 1601 100260 117890 103631 118218	Presence / Absence Count	P 0	0 0	р 0	0 P 0 0	0 0	0	0 0	0 0	0	0 0		0 0	P	0 P 0 0	0 0	0 0	0 0	P 0	P P 0 0	P P 0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
	101027 884676 100077 345281 100088 152367	Count	0 0 77 9 7 1	0 2 91 146	49	1 0	0 4 0 12	3 1	0 3 42 138	10 7 159 171	35	2 0		0 0	212	0 1 1 70 0 0	7 0 31 19	0 0	0 1 29 250	112 1	0 0	0 0 170 22	8	0 2 1 29 0 0	0 2 17 9	0	0 0	0 1 6 10	0	2 0 59 0	1 36 2	2 227
ensis	100148 131495 100959 124462	Count	1 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	1 0	0	0 0	0 0	3	0 0	0 0	1	0 0	1 0	0	0 0	0	0
	100683 106925 100267 117736 100107 111799	Juvenile Count Presence / Absence Presence / Absence	0 0	0 0	0	0 0 0 P	0 0	P	0 0 0 P	0 0	0	0 0		1 0 P P	0	0 0 P P	0 0 P 0	0 1 P P	0 0 P 0	1 P	0 1 P P	1 0	2 P	0 0 P P	0 0 P 0	0 P	0 1 0 P	0 0 P 0	0 P	0 0 0 P	0 P	0
unica	100980 111834 103630 967	Presence / Absence Presence / Absence Fragment Presence / Absence		0 0	0	0 0	0 0	0	0 0	0 0	0	0 0			0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0 0 P	P 0	0 0	0 0	0	0 0	0	0
260	100082 130240 101598 131500	Confer Count Count	1 0	0 0	3	0 1 0 0	1 1	0	1 1	0 1	5	3 0		0 0	0	0 1 0 0	4 0	0 1	1 0	0	3 4	0 0	2	0 0	0 0	0	0 0	0 1	0	3 0 1 0	0	2
	103009 138158 100998 140299 102310 129341	Species A Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		1 0	0	1 0	0 0	0 0	0 0	0	0 1	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
	102310 129341 100155 130266 100179 130268	Count	1 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 1	0 5	0 0	0 0	0	1 0	0 0	0	0 1	0 0	0	0 0	0 4	0	1 0	0	0
n apolis nage	100205 130269 100316 147008 101081 152267	Count	0 0	0 0	0	0 0	0 0	0	0 0 1 1	0 2	1	0 0		0 0	0	0 0	0 0	0 0	0 0	1	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
lie -	100096 129892 101404 102783	Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 1 0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0 1 0	0	0 0	0 0	0	0 0	0	0
qilsoni	100749 147021 100356 422916 100336 140728	Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 1 0 1	0 0	0	0 0	0	0
	100336 140728 100009 799 100014 152391	Count	0 0 2 0	0 0	0	0 0	0 0	0	0 0	0 0	0	1 0	0 0	0 0	0	0 0 2 0	0 0	0 0	0 0 0	0 3	0 0 4 2	0 0	0	0 0	0 0	0	0 3	0 0	0	0 0 2 0	0	0
	100047 129370 100206 130353	Juvenile Count Count	0 1 0 0	0 1 0 0	2	1 1 0 0	0 0	0	0 0	0 0	2	0 0		0 0 2 0	0	1 2 0 0	0 2	2 1 0 0	0 1 2 0	2	3 1 0 2	5 1 0 0	0	0 0	0 2 0 0	0	1 0 1 0	0 1 0 0	0	1 1 0 1	0	0
	103082 130353 102079 130355 100428 130357	Fragment Presence / Absence Count	0 0	0 0	0	0 1	0 0	2	0 0	0 0	0	0 0		0 0	0	1 0 2 0	0 0	0 0	0 0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0	0 0	0 0 0	0	0 0 0 1 2	0 0	0	0 0 0	0	0
	100022 130359 103431 130359 100105 130362	Fragment Presence / Absence	2 0	0 1 0 0	0	3 0 0 0	0 1	0	0 0	1 3	3	0 0		0 2	2	0 3	2 6	0 0	0 0	0	3 1 0 0	0 1 0 0	0	0 1	0 1 0 0	0	1 0	0 3 P 0	0	1 0 0	1	5
sis ensis	100135 130363 100391 179538	Count Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0			1	0 0 0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
ta	100046 140589 100988 152547 103634 152547	Count	0 2 0 0	3 4 0 0	0	0 0	0 10	0	0 15	0 0 7 8 0 1	6	1 0		1 2	4	2 1 0 0	7 8	0 0	1 14 0 2	2	4 5	8 0	0	0 2	3 8	0	0 0	0 0	0	2 0 0	8	7
u l	100156 130500 100190 124913	Count Count	5 0 2 0	0 0	0	0 0	0 1	0	0 0	0 1	0	1 0			5	0 1 0	0 0	1 0	0 5	2	1 0 0 0	1 0 0 0	0	0 0	1 0 0 0	1 0	0 0	0 1	0	0 0	1 0	3
	100189 124929 100089 123200	Count Juvenile Count	0 0 4 0	0 0	0	0 0	0 0	0	0 0	0 1	0	0 0		0 0	1 0	0 0	0 1 0	0 0	0 0	0	0 0	0 0	0	0 0	1 0 2	0	0 0	0 0	0	0 0 0	0	0
	100078 710680	Count Count	0 0	0 0	0	1 0 0 0	0 0	0	2 1 0 0	0 0 0 0	3	0 0		0 0	0	0 2	0 0 1 0	0 0	0 0	0	0 0	0 0 0 0	9	0 0	0 0	0	0 0	0 0	0	0 1	1 0	1 0
11	100883 107232 100171 130585	Count	3 0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 1 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
nonvi	10042 100732 10073 107732 100771 130585 100944 334417 10066 980 100996 102915 100251 410749 100059 140737 100021 574582	Court Joerile Court Cour	0 0 0 1	0 0 0 0	0	0 0 0 2	0 0	0	U 0 5 0 0 n	d 0 0 0	0	0 0		u 0 3 1 0 n	0	0 0 2 0	0 0	0 0 0 0	0 0 10 0 0 n	0	0 0 0 0	0 0	0 177 0	0 0 0 0	0 0 0 1	0	0 0	0 0 9 1	0	U 0 0 0	0	0
olion) strombus stromb	100251 410749 100059 140737	Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0 0 0 1 0	0	0 0 6 0		0 0	0	0 0 0	0 0	0 0 0 0 4 0	0 0	0	0 0	0 0	0	0 0 3 1	0 0	1 0	0 0	0 0	0	0 0 2	0 4	0
to	100021 574582 100178 130599 103397 130599	Count Count Fragment Preserve / Abronom	0 0 19 0	0 0 6 5 0 0	0 2 0	0 0 0 0	0 0	0	0 0 3 15 0 0	1 0 14 10 0 0	5	0 0		0 0	7	0 0 0 3	0 0 3 0		0 0	8	1 0 3 2 0 0	0 0	0	0 0	0 0	0	0 0	0 2	0	0 0	2 2	0 20 0
undica	100028 128545 100331 334506	Count Count	2 1 2 0	0 1 0	0	0 0	0 10	0	12 2 0 0	29 21 0 0	5	0 0		1 0	0	0 3	14 4 0 0	1 0 0	2 1 0 0	6	5 1 0 0	2 1 0 0	6	0 2	1 5 0 0	3	0 0	19 9 0 0	0	9 1 0 0	7	6
S .	100239 128545 100331 334506 100329 334514 100387 793 100203 130795 100116 130711 100645 130322 100545 130322	Count	2 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0		0 0	0 0	0 0	0		1 0	0 0		0 0	0 0	0	0 0			0 0	0	0
ans .	100116 130711 100060 129710	Count	0 1 0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0 0 0	0	0 0 0 0	0 0	0 1 0 0 1 0	0 0	0	- 1 0 0 0 0	0 0	0	1 0 0 0	0 0	0	0 0	0 0	0	- U 0 0	0	0
anchiata	100645 130322 100218 131160	Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	1	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
wm	100133 131169 100020 130980 103216 130980	Count Count Count Fragment Presence / Absence	24 2 0 0	0 0	0	0 0 0 0	0 0	0	3 3 0 0	0 0	1 0	45 1		4 4 0 0	0 1 0	0 0 P 0	0 0	20 1	0 0 12 6 0 0	3	6 34 0 0	0 0	47	4 0 0 0	0 0 4 1 0 0	7	0 0	19 0 0 0	0	0 3	1 0	4
	100645 130522 100218 131160 100133 131169 100220 130980 100319 131171 100029 130537 102380 130537	Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0 0 0 0 0	0	1 0 5 0		0 0	0	0 0	0 0	1 0 1 4 0 0	0 0	0	0 0	0 0	0	0 0	0 0	2	2 0	0 0	0	0 0	0	0
	102980 130537 100193 117234 100995 131072 102141 123106	Fragment Presence / Absence Presence / Absence Count	0 0	0 0 0 0	0	u 0 0 0	0 0 0 0	0	0 0 0 P 0 0	0 0	0	0 0		0 0							0 0	0 0 0 0	0 P 0	0 0	0 0 0 0	0	0 0	0 0 P 0	0	0 0 0 0	0	0
ri	102141 123106 100689 131394		0 0	0 0	0	0 0	P 0	0	0 0	0 0	0	0 F		0 0 0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
×	100149 131394 100180 596189 100136 131187 103443 131187 100183 138159 100183 138159	Confer Count Count Count Fragment Presence / Absence Juvenile Count	1 0 3 0	0 0	0	0 0	0 0	0	0 0	0 0 0 0	2	0 0		0 0 0 0	0	0 0	0 0	0 0	0 0	0	0 1	0 0	3	0 0	0 0	0	0 0 0 3 0 0	0 0	0	0 0	0	3
	100183 138159 101118 129595	Juvenile Count	0 0	0 0	0	0 0	0 0		0 0		0	- C - C - C		0 0	0			1 0 0 0		0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
	101118 129595 100207 131077 100981 129712	Juvenile Count Juvenile Count Count Count Count Count Count Count Count Count	10 0	2 0	2	1 2 0 0	0 0	3	6 2 0 0	2 1	1	6 1	9 0 0	3 0	0	2 1 0 0	1 3	8 4	4 7	8	1 11 0 0	2 2 0 0	17	7 0	3 2	4	0 0	7 0	0	1 7 0 0	3	8
sa	100981 129712 100051 102928 100239 146952 100184 225468	Count Count Juvenile Count	u 0 3 0	u 0 3 1 0 0	0	0 0 1 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0 0 1 0 0	0 0	0 0	0 0	1 3 0	0 0 3 0	0 0	0	0 0	0 0	0	0 0	0 0	0	u 0 3 0	0	0
	100222 152269	Juvenile Count Count Count Count Count	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0		0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	1	0 0	0 0	0	0 0	0 0	0	0 0	0	0
	102232 141644 100204 152378 100052 382318 100052 141652		0 0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0 2 1		1 0 5 0	5	0 0 2 3	0 0	0 0	1 1 0 2	0	0 0	0 0 4 0	2	0 0	0 0 4 0	0	0 0	0 0	0	0 0	4	0 1 0
	100052 342518 100053 141662 100249 124670 100071 136063 100288 130512 100281 131575 100653 111653 100856 107079	Count Count Count	0 0 1 0	0 0	0	· 0 0 0	0 0	0	0 0	0 0	0	0 0			0	0 0 0 0	0 0	0 0	0 0	0 2 0	0 0	· 0 0 0	0	0 0	0 0 0 0	0	0 0	0 0	0	0 0	0	0
eus	100288 130512 100211 131575	Count Count Count Presence / Absence Juvenile Count	0 0	0 0	0	0 0 0 0	0 0	0	0 0	0 0	0	0 1		0 0	0	0 0 0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
	100653 111653	Presence / Absence		0 0	0	0 0	0 0	0	0 0	0 0	1 0	0 0		0 0	0	0 0	P 0	0 0	0 0	0	0 0	0 0	0	0 1 0				1 0 1 0	0	0 0	0	0

Appendix XII - Macrobenthic biomass presented as Ash Free Dry Weight (AFDW)

	ST01_M	A STO	02_MA(S	T03_MA	ST04_M/	(ST05_	MA(ST06_I	MAC STO	7_MA(\$1	T08_MA(ST09_MA	ST10_MA	ST11_MA	ST12_M	ACST13_M	ACST14_M	A(ST15_N	AC ST16_I	MACST1	7_MA(ST	8_MACST1	9_MACST	20_MA	ST21_MAG	ST22_MA	ST23_MA	ST24_MA	ST25_MAG	ST26_M/	ST27_MA	ST28_MA	ST29_MA	ST30_MA	ST31_M/	ACST32_M	ACST34_MA	ST35_MA	ST36_MA	ST37_MA	ST38_MAG	ST39_MACST	40_MA(S	T41_MAC	T42_MA	ST43_MA(ST	44_MA(S	T45_MA(S	T46_MA(ST4	7_MACST48	MAC ST49	9_MA(ST50	MACST51_N
MISCELLANIA	0.02250	506 0.	0.00076	0.035154	0.08802	5 0.002	403 0.001	256 0.0	000357 0	0.000326	0.248682	0	0.00076	0.1333	78 0.10688	8 0.18844	9 0.041	23 0.010	246 0.00	02124 0.	000822 3.1	0E-05	0	0.329453	0.009316	0.026257	0.155636	0.162688	0.00015	0.342566	0.00114	0.029202	0.065736	5 0.05108	38 0.00480	0.048035	0.001845	0.002217	0	0.011703	0.007146 0.	.008742	0.006169	0.000543	0.00045 0	009037 0	0.022832	0 0.3	24012 0.00	3457 0.12	24651 0.16	8144 0.0666
ANNELIDA	0.10837	376 0.	0.00324	0.003643	0.01250	9 0.047	012 0.020	398 0.0)11517 0	0.005999	0.04619	0.006572	0.004526	0.027	42 0.0706	5 0.07320	0.08	857 0.011	424 0.0 ⁻	10928 0.	092613 0.0	21871 0.	.051941	0.037774	0.080616	0.054188	0.039308	0.273575	0.01168	0.010773	0.02055	0.027606	0.075237	7 0.06979	0.13798	1 0.022537	0.064449	0.056591	0.0175	0.005518	0.017996 0.	.014431	0.013981	0.213466	0.015237 0	008463 0	0.055583	0.003782	0.0527 0.14	5065 0.03	31155 0.02	9373 0.0379
CRUSTACEA	0.03739	895 0.	0.00315	0		0.009	293 0.362	633	0 0	0.000315	0.0099	0.001553	0.003465	0.0015	98 0.03876	8 0.00114	8 0.0282	15 0.001	598 0.0	00072 (.00108 0.	00216 0.	.001148	0.002588	0.001283	0.081068	2.531565	0.22752	0.00848	0.004478	0.00038	0.004838	0.011453	3 0.00740	0.09591	8 0.007673	0.000315	0.006008	0	0.001013	0.003128	0	0.001958	0.002408	0.001328 0	001485 0	0.140445	0 0.0	14423 0.65	3085 0.00	06998 0.57	4088 0.017
ECHINODERMATA	0.70994	944 0.	.01912	1.053976	1.22550	4 0.451	384 0.380	808 0.0	02352 0	0.170408	2.579384	0.004648	0.126784	0.8490	56 1.04842	4 1.25743	2 0.9080	0.009	728 0.02	24312 0.	015368 0.0	00808 (0.03412	1.352432	0.054736	0.814736	0.366656	0.486704	0.00010	0.003584	0.07890	4 2.643008	1.218296	5 2.26711	12 0.06888	8 1.301712	0.116992	0.01452	0.017608	4.082616	0.30776 0.	.040008	0.239096	1.631288	0.000392 0	022024 0	0.171208	0.00252	0.9846 0.00	0432 1.04	40488 0.73	4768 1.1542
MOLLUSCA	0.05262	524 0.0	016108	0.0102	0.03689	9 0.00	629 0.087	848 0.0	07523 0	0.046963	0.022313	0.000493	0.028654	0.0567	0.04996	3 0.03232	6 0.0108	821 0.00	278 0.0	00023 0.	030677 0.0	03936 0.	.010838	0.155805	0.006358	0.034026	2.185724	0.036168	0.01660	0.021922	0.02095	0.075965	0.087678	8 0.17380	08 0.07545	5 0.975571	0.003783	0.024557	0.007727	0.018301	0.010217 0.	.030498	0	0.020502	0.000536 0	261851 0	0.061736	0.178917 0.0	34714 0.00	2814 0.20	08344 0.03	0855 0.0179

Appendix XIII - Dendrogram resulting from cluster analysis

Samples

Appendix XIV - Results of SIMPER analysis

Group A

Average similarity: 41.79

Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%
Kurtiella bidentata	7.19	9.31	1.72	22.28	22.28
Amphiura filiformis	6.82	8.82	1.48	21.12	43.4
Nucula nitidosa	1.83	2.55	1.58	6.1	49.5
Phoronis	1.77	1.96	1.05	4.69	54.19
Sthenelais limicola	1.52	1.93	1.16	4.63	58.82
Amphiuridae_Juvenile	1.57	1.54	0.87	3.68	62.5
Pholoe baltica	1.5	1.42	0.89	3.39	65.89
Scalibregma inflatum	1.66	1.23	0.57	2.94	68.82
THRACIOIDEA_Juvenile	0.95	1.04	0.84	2.5	71.32

Group B

Average similarity: 37.80

Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%
NEMERTEA	3.44	15.37	4.73	40.66	40.66
Spiophanes bombyx	1.29	5.14	7.85	13.61	54.27
THRACIOIDEA_Juvenile	1	2.62	0.9	6.92	61.19
Bathyporeia elegans	0.85	2.41	0.9	6.37	67.56
Nephtys cirrosa	0.96	2.39	0.9	6.33	73.89

Group C

Average similarity: 45.33

Species	Av.Abund Av.Sin	n Sim/SD	Contrib% Cu	m.%
Sthenelais limicola	1.87	9.17 SD=0!	20.23	20.23
Bathyporeia gracilis	1.57	7.49 SD=0!	16.52	36.75
Nephtys cirrosa	1.41	7.49 SD=0!	16.52	53.27
Aglaophamus agilis	1	5.3 SD=0!	11.68	64.96
Amphiuridae_Juvenile	1.21	5.3 SD=0!	11.68	76.64

Group D

Average similarity:	35.11
---------------------	-------

Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%
Scalibregma inflatum	2.37	6.43	3.06	18.33	18.33
Sthenelais limicola	2.02	5.45	1.11	15.52	33.85
Nephtys cirrosa	1.28	4.33	4.64	12.34	46.2
Scoloplos armiger	1.11	2.86	1.07	8.14	54.33
Lagis koreni	1.29	2.26	1.15	6.43	60.76
THRACIOIDEA_Juvenile	1.04	1.69	0.61	4.81	65.57
Abra alba	0.89	1.41	0.61	4.02	69.59
Scolelepis bonnieri	0.77	1.37	0.59	3.91	73.5

Appendix XV - Seabed imagery still logs

				Townst	T	Consultad	Consultad	Distance
Station	age File Na	Fix Time (UTC)	Date	Target Easting	Target Northing	Sampled Easting	Sampled Northing	from Target
ST02	F02_2022_0	16:56:01	29/05/2022	461209.685	5957188.416	461207.659	5957174.598	(m) 14.0
ST02	T02_2022_0	16:56:26	29/05/2022	461209.685	5957188.416	461212.824	5957177.337	11.5
ST02	Г02_2022_0	16:57:10	29/05/2022	461209.685	5957188.416	461217.719	5957179.410	12.1
ST02	T02_2022_0	16:58:00	29/05/2022	461209.685	5957188.416	461208.357	5957187.276	1.8
ST02	T02_2022_0	16:58:47	29/05/2022	461209.685	5957188.416	461204.327	5957194.208	7.9
ST02 ST03	F02_2022_0 F03_2022_0	16:59:31 17:35:06	29/05/2022 29/05/2022	461209.685 462611.030	5957188.416 5957149.039	461198.585 462627.952	5957201.376 5957146.247	17.1 17.1
ST03	T03_2022_0	17:35:49	29/05/2022	462611.030	5957149.039	462620.893	5957145.636	10.4
ST03	гоз_2022_0	17:36:24	29/05/2022	462611.030	5957149.039	462610.930	5957144.714	4.3
ST03	Г03_2022_0	17:37:05	29/05/2022	462611.030	5957149.039	462607.700	5957144.740	5.4
ST03	T03_2022_0	17:37:41	29/05/2022	462611.030	5957149.039	462607.586	5957155.199	7.1
ST04	T04_2022_0	04:21:15	01/06/2022	464111.030	5957149.039	464090.187	5957156.328	22.1
ST04 ST04	F04_2022_0 F04_2022_0	04:21:57 04:22:29	01/06/2022	464111.030	5957149.039 5957149.039	464094.303 464099.191	5957152.725 5957153.776	17.1 12.8
ST04	T04_2022_0	04:22:29	01/06/2022	464111.030	5957149.039	464101.913	5957155.778	9.3
ST04	Г04_2022_0	04:23:08	01/06/2022	464111.030	5957149.039	464106.959	5957156.406	8.4
ST04	T04_2022_0	04:23:31	01/06/2022	464111.030	5957149.039	464112.263	5957154.053	5.2
ST04	 F04_2022_0	04:23:51	01/06/2022	464111.030	5957149.039	464118.288	5957151.262	7.6
ST04	Г04_2022_0	04:24:44	01/06/2022	464111.030	5957149.039	464118.176	5957145.499	8.0
ST05	F05_2022_0	05:49:15	01/06/2022	465611.030	5957149.039	465597.998	5957141.733	14.9
ST05	T05_2022_0	05:50:42	01/06/2022	465611.030	5957149.039	465612.529	5957140.959	8.2
ST05	T05_2022_0	05:51:47	01/06/2022	465611.030	5957149.039	465616.019	5957140.377	10.0
ST05	T05_2022_0	05:52:26	01/06/2022	465611.030	5957149.039	465620.827	5957139.785	13.5
ST05 ST05	F05_2022_0 F05_2022_0	05:52:59 05:53:37	01/06/2022	465611.030 465611.030	5957149.039 5957149.039	465615.261 465611.673	5957144.944 5957150.088	5.9 1.2
ST05	F05_2022_0		01/06/2022	465611.030	5957149.039		5957150.088	3.6
ST05	T05_2022_0	05:54:50	01/06/2022	465611.030	5957149.039	465605.384	5957155.475	8.6
ST06	 T06_2022_0		01/06/2022	466873.419	5956911.428	466844.381	5956893.421	34.2
ST06	Г06_2022_0	06:12:40	01/06/2022	466873.419	5956911.428	466866.799	5956907.782	7.6
ST06	Г06_2022_0	06:13:46	01/06/2022	466873.419	5956911.428	466873.178	5956910.129	1.3
ST06	T06_2022_0	06:14:42	01/06/2022	466873.419	5956911.428	466881.665	5956916.967	9.9
ST06	T06_2022_0		01/06/2022	466873.419	5956911.428	466889.182	5956912.408	15.8
ST06	T06_2022_0		01/06/2022	466873.419	5956911.428	466889.174	5956915.913	16.4
ST07 ST07	F07_2022_0 F07_2022_0	14:44:04	29/05/2022 29/05/2022	455127.525 455127.525	5959655.225 5959655.225	455122.433 455124.684	5959659.749 5959660.840	6.8 6.3
ST07	F07_2022_0		29/05/2022		5959655.225	455131.712	5959658.548	5.3
ST07	F07_2022_0		29/05/2022	455127.525	5959655.225	455136.442	5959657.056	9.1
ST07	 T07_2022_0		29/05/2022	455127.525	5959655.225	455135.281	5959645.829	12.2
ST08	Г08_2022_0	15:03:35	29/05/2022	456611.030	5959649.039	456613.848	5959657.921	9.3
ST08	Г08_2022_0	15:04:11	29/05/2022	456611.030	5959649.039	456617.649	5959648.540	6.6
ST08		15:04:50	29/05/2022	456611.030	5959649.039	456620.558	5959649.626	9.5
ST08		15:05:34	29/05/2022	456611.030	5959649.039	456621.558	5959643.719	11.8
ST08	F08_2022_0	15:06:04	29/05/2022	456611.030	5959649.039	456618.558	5959632.843	17.9
ST08 ST09	Г08_2022_0 Г09_2022_0	15:06:16 12:40:11	29/05/2022 28/06/2022	456611.030 464135.247	5959649.039 5964444.396	456619.240 464122.273	5959635.396 5964441.337	15.9 13.3
ST09	F09_2022_0	12:40:11	28/06/2022	464135.247	5964444.396	464125.269	5964437.197	12.3
ST09	F09_2022_0	12:41:20	28/06/2022	464135.247	5964444.396	464133.398	5964441.474	3.5
ST09		12:41:47	28/06/2022	464135.247	5964444.396	464136.189	5964444.902	1.1
ST09	Г09_2022_0	12:42:21	28/06/2022	464135.247	5964444.396	464140.304	5964440.642	6.3
ST10	Г10_2022_0	15:43:25	29/06/2022	459611.030	5959649.039	459611.088	5959647.556	1.5
ST10	T10_2022_0		29/06/2022	459611.030	5959649.039	459614.439	5959646.415	4.3
ST10	F10_2022_0	15:44:35	29/06/2022	459611.030	5959649.039	459621.142	5959644.354	11.1
ST10 ST10	Г10_2022_0 Г10_2022_0		29/06/2022 29/06/2022	459611.030 459611.030	5959649.039 5959649.039		5959636.646 5959634.764	18.5 19.0
ST10 ST11	F11_2022_0				5958604.849			19.0
ST11	Γ11_2022_0 Γ11_2022_0		29/06/2022	461377.879	5958604.849	461390.077	5958605.143	12.2
ST11	T11_2022_0		29/06/2022	461377.879	5958604.849	461382.660	5958600.865	6.2
ST11	<u> </u>		29/06/2022	461377.879	5958604.849	461377.417	5958604.469	0.6
ST11	Г11_2022_0	18:02:03	29/06/2022	461377.879	5958604.849	461379.423	5958607.901	3.4
ST12	T12_2022_0	18:21:12	29/06/2022	462611.030	5959649.039	462627.519	5959640.264	18.7
ST12	T12_2022_0	18:21:54	29/06/2022	462611.030	5959649.039	462619.814	5959643.470	10.4
ST12	T12_2022_0	18:22:32	29/06/2022	462611.030	5959649.039	462618.416	5959649.934	7.4
ST12 ST12	F12_2022_0 F12_2022_0	18:23:14 18:24:23	29/06/2022 29/06/2022	462611.030 462611.030	5959649.039 5959649.039	462623.534 462626.960	5959655.456 5959655.429	14.1 17.2
5112	ויב_2022_0	10.24.23	23/00/2022	402011.030	5555045.055	402020.900	5555055.429	11.2

Appendix XVI - Seabed imagery video logs

Station	Date	Video Start Time (UTC)	Video Length	Video End Time (UTC)	GPS to Camera Time Offset	No. of Videos	No. of Images Per Video	Video File Name	Depth (m)	Camera System	er Housing Height Setting	Between Laser Points (cm)	FOCI/OSP AR present (excludin g reef)	Potential Annex I reef?	Deploym ent Position Offset	Notes
ST01 ST02	29/05/2022	16:55:45	00:03:51	16:59:36	00:00:03	Stati	on not sam	pled due to ST02_2022	being co 35.0	vered by TR Rayfin PLE S	R04	10	N	N	USBL	C I
3102	23/03/2022	10.55.45	00.03.31	10.59.50	00.00.03	1	0	3102_2022	55.0	Nayiiii FLE .	p - Flan vie	10	11		USBL	Sand.
ST03	29/05/2022	17:34:15	00:03:30	17:37:45	00:00:02	1	5	ST03_2022	34.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Mud wit small burrows
ST04	01/06/2022	04:20:45	00:04:05	04:24:50	00:00:00	1	8	ST04_2022	34.0	Rayfin PLE S	əp - Plan Vie	10	N	N	USBL	Muddy sand. N positior log data
ST05	01/06/2022	05:48:30	00:06:30	05:55:00	00:00:01	1	8	<u>.</u> ST05_2022	32.0	Rayfin PLE S	ip - Plan Vi∉	10	Y	N	USBL	Megafa a burrov in mud. Sandy mud.
ST06	01/06/2022	06:12:00	00:04:40	06:16:40	00:00:00	1	6	.ST06_2022	30.0	Rayfin PLE S	ip - Plan Vi∉	10	Y	N	USBL	Megafa a burro in mud. Sandy mud.
ST07	29/05/2022	14:43:45	00:02:22	14:46:07	00:00:01	1	5	ST07_2022	30.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Sand.
ST08	29/05/2022	15:03:08	00:03:19	15:06:27	00:00:03	1	6	ST08_2022	34.0	Rayfin PLE S	<u>.</u>	10	N	N	USBL	Sand.
ST09 ST10	28/05/2022 29/05/2022	12:39:47 15:43:10	00:02:52 00:02:07	12:42:39 15:45:17	00:00:04	1	5	ST09_2022 ST10_2022	27.0 32.0	Rayfin PLE S Rayfin PLE S	· · ·	10 10	N N	N N	USBL USBL	Sand. Sand.
ST11	29/05/2022	17:59:10	00:02:59	18:02:09	00:00:03	1	5	ST11_2022	31.0	Rayfin PLE S	·	10	N	N	USBL	Sand.
ST12	29/05/2022	18:20:30	00:03:58	18:24:28	00:00:02	1	5	ST12_2022	29.0	Rayfin PLE S	əp - Plan Vi€	10	N	N	USBL	Mud wi small burrows
ST13	01/06/2022	07:53:35	00:04:43	07:58:18	00:00:01	1	6	ST13_2022	25.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Muddy
						1				-		-		N	USBL	sand. Muddy
ST14	01/06/2022	07:27:35 07:03:20	00:05:24	07:32:59 07:13:20	00:00:01		6 5	ST14_2022	24.0	-	əp - Plan Vie	10	N			sand. Muddy
ST15	01/06/2022	07:03:20	00:01:23	07:13:20	00:00:01	2	3	ST15_2022	22.0	Rayfin PLE S	op − Plan Vie	10	N	N	USBL	sand.
ST16	29/05/2022	13:46:30	00:02:42	13:49:12	00:00:02	1	5	ST16_2022	37.0	Rayfin PLE S	· · · · · · · · · · · · · · · · · · ·	10	N	N	USBL	Sand.
ST17	29/05/2022	14:07:00	00:02:36	14:09:36	00:00:03	1	5	ST17_2022	35.0	Rayfin PLE S		10	N	N	USBL	Sand. Sandy
ST18	28/05/2022	17:01:40	00:03:32	17:05:12	00:00:03	1	6	ST18_2022	34.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	mud.
ST19	28/05/2022	16:33:15	00:02:28	16:35:43	00:00:05	1	5	ST19_2022	32.0	Rayfin PLE S	əp - Plan Vi€	10	N	N	USBL	Mud wi small burrow
ST20	28/05/2022	16:07:11	00:06:16	16:13:27	00:00:04	1	5	ST20_2022	32.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Muddy
ST21	28/05/2022	14:02:30	00:04:21	14:06:51	00:00:05	1	6	ST21_2022	32.0		p - Plan Vie	10	N	N	USBL	sand. Mud w small
	20/05/2022	14:25:20	00:02:24	14:20:44	00:00:02			CT22 2022	25.0			10	N	N	LICEL	burrow Muddy
ST22	28/05/2022	14:35:20	00:03:24	14:38:44	00:00:03	1	5	ST22_2022	25.0	-	p - Plan Vie	10	N	N	USBL	sand.
ST23	28/05/2022	13:19:40	00:03:09	13:22:49	00:00:04	1	5	ST23_2022	29.0	Rayfin PLE S		10	N	N	USBL	Sand. Muddy
ST24 ST25	01/06/2022	08:35:20 10:23:20	00:04:27 00:04:55	08:39:47 10:28:15	00:00:00	1	6	ST24_2022	26.0 30.0	-	p - Plan Vi€ p - Plan Vi€	10 10	N N	N N	USBL	sand. Muddy sand.
ST26	29/05/2022	13:22:55	00:02:37	13:25:32	00:00:02	1	5	ST26_2022	38.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Sand.
ST27	28/05/2022	17:51:55	00:03:33	17:55:28	00:00:04	1	7	ST27_2022	34.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Muddy sand.
ST28	29/05/2022	12:08:55	00:03:47	12:12:42	00:00:01	1	6	ST28_2022	37.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Sand.
ST29	29/05/2022	11:50:22	00:03:00	11:53:22	00:00:01	1	5	ST29_2022	35.0	Rayfin PLE S	əp - Plan Vie	10	N	N	USBL	Muddy sand. Mud w
ST30	28/05/2022	15:27:15	00:07:44	15:34:59	00:00:03	1	8	ST30_2022	29.0	Rayfin PLE S	əp - Plan Vi€	10	N	N	USBL	small burrow
ST31	28/05/2022	15:03:52	00:07:45	15:11:37	00:00:06	1	5	ST31_2022	27.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Muddy sand.
ST32	29/05/2022	12:47:00	00:04:06	12:51:06	00:00:03	1	5	ST32_2022	38.0	Rayfin PLE S	op - Plan Vi€	10	N	N	USBL	Muddy sand.
ST33	20/05/2022	10.20.00	00.02.45	10.10.15					_	vered by TF		10				
ST34 ST35	29/05/2022 29/05/2022	18:39:00 17:14:00	00:03:45 00:07:18	18:42:45 17:21:18	00:00:09 00:00:04	1	5	ST34_2022 ST35_2022	30.0 34.0	Rayfin PLE S Rayfin PLE S	p - Plan Vie	10 10	N N	N N	USBL USBL	Sand. Sand.
ST36	29/05/2022	13:04:45	00:02:38	13:07:23	00:00:02	1	5	ST36_2022	38.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Sand.
ST37	29/05/2022	12:28:50	00:02:59	12:31:49	00:00:02	1	5	ST37_2022	36.0		p - Plan Vie	10	N	N	USBL	Sand. Muddy
ST38 ST39	28/05/2022 28/05/2022	13:36:37 15:47:15	00:03:37	13:40:14 15:50:44	00:00:04	1	5	ST38_2022	35.0 27.0		p - Plan Vie p - Plan Vie	10	N	N	USBL	sand. Muddy
ST39	01/06/2022	10:09:10	00:03:29	10:12:35	00:00:03	1	6	ST39_2022	27.0	-	p - Plan Vie p - Plan Vie	10	N	N	USBL	sand. Muddy
										-						sand. Muddy
ST41	29/05/2022	15:23:00	00:02:51	15:25:51	00:00:02	1	5	ST41_2022	34.0	Rayfin PLE S	ip - Plan Vie	10	N	N	USBL	sand.
ST42	29/05/2022	15:58:45	00:02:52	16:01:37	00:00:03	1	5	ST42_2022	38.0		p - Plan Vie	10	N	N	USBL	Sand.
ST43 ST44	29/05/2022	14:21:20 17:33:30	00:03:45	14:25:05 17:36:45	00:00:03	1	6 5	ST43_2022	34.0 34.0		p - Plan Vie	10 10	N N	N N	USBL USBL	Sand. Muddy
	28/05/2022	08:15:55	00:03:15	08:20:49	00:00:04	1	6	ST44_2022	27.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	sand. Muddy sand w
ST44	01/06/2022					Stati	on not sam	pled due to	o being co	vered by TF	802	-				burrow
ST45 ST46	01/06/2022					Ctat:	on not sam			vered by TF		10				Muddy
ST45		17:16:45	00:03:00	17:19:45	00:00:04	1	8	ST48 2022	32.0	Ravtin PLE 9	pp - Plan via	10	N	N	USBL	
ST45 ST46 ST47 ST48 ST49	28/05/2022 28/05/2022	17:16:45 13:00:27	00:03:00 00:02:26	17:19:45 13:02:53	00:00:04	1 1	6	ST48_2022 ST49_2022	26.0	Rayfin PLE S	p - Plan Vie	10	N	N	USBL	Sand.
ST45 ST46 ST47 ST48	28/05/2022	13:00:27 04:46:45 06:41:30	00:02:26 00:04:40 00:10:00	13:02:53 04:51:25 06:51:30	00:00:04 00:00:00 00:00:00	1	6 7 4	ST49_2022 ST50_2022 ST51_2022		Rayfin PLE S Rayfin PLE S						Sand. Muddy
ST45 ST46 ST47 ST48 ST49 ST50 ST51	28/05/2022 28/05/2022 01/06/2022 01/06/2022	13:00:27 04:46:45 06:41:30 06:51:30 05:02:50	00:02:26 00:04:40 00:10:00 00:00:32 00:10:00	13:02:53 04:51:25 06:51:30 06:52:02 05:12:50	00:00:04 00:00:00 00:00:00 00:00:01 00:00:01	1 1 1 2	6 7 4 1 28	ST49_2022 ST50_2022 ST51_2022 ST51_2022_ TR01_2022	26.0 34.0 22.0	Rayfin PLE S Rayfin PLE S Rayfin PLE S	p - Plan Vie p - Plan Vie p - Plan Vie	10 10 10	N N N	N N N	USBL USBL USBL	Sand. Muddy Muddy Covers
ST45 ST46 ST47 ST48 ST49 ST50	28/05/2022 28/05/2022 01/06/2022	13:00:27 04:46:45 06:41:30 06:51:30 05:02:50 05:12:50 05:22:10	00:02:26 00:04:40 00:10:00 00:00:32 00:10:00 00:10:00 00:01:12	13:02:53 04:51:25 06:51:30 06:52:02 05:12:50 05:22:50 05:23:22	00:00:04 00:00:00 00:00:00 00:00:01 00:00:01 00:00:01	1 1 1	6 7 4 1 28 9 1	ST49_2022 ST50_2022 ST51_2022 ST51_2022_ TR01_2022 TR01_2022 TR01_2022 TR01_2022	26.0 34.0	Rayfin PLE S Rayfin PLE S	p - Plan Vie p - Plan Vie p - Plan Vie	10 10	N N	N N	USBL USBL	Sand. Muddy Muddy Covers ST33. L re-run
ST45 ST46 ST47 ST48 ST49 ST50 ST51	28/05/2022 28/05/2022 01/06/2022 01/06/2022	13:00:27 04:46:45 06:41:30 06:51:30 05:02:50 05:12:50	00:02:26 00:04:40 00:10:00 00:00:32 00:10:00 00:10:00	13:02:53 04:51:25 06:51:30 06:52:02 05:12:50 05:22:50	00:00:04 00:00:00 00:00:00 00:00:01 00:00:01	1 1 1 2	6 7 4 1 28 9	ST49_2022 ST50_2022 ST51_2022 ST51_2022 TR01_2022 TR01_2022	26.0 34.0 22.0	Rayfin PLE S Rayfin PLE S Rayfin PLE S Rayfin PLE S	p - Plan Vie p - Plan Vie p - Plan Vie	10 10 10	N N N	N N N	USBL USBL USBL	Sand. Muddy Muddy Covers ST33. L
ST45 ST46 ST47 ST48 ST50 ST51 TR01	28/05/2022 28/05/2022 01/06/2022 01/06/2022 01/06/2022	13:00:27 04:46:45 06:41:30 06:51:30 05:02:50 05:12:50 05:22:10 05:22:10 09:29:55	00:02:26 00:04:40 00:10:00 00:00:32 00:10:00 00:01:12 00:10:00 00:10:00	13:02:53 04:51:25 06:51:30 06:52:02 05:12:50 05:22:50 05:23:22 09:39:55 09:49:55	00:00:04 00:00:00 00:00:00 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01	1 1 2 3	6 7 4 1 28 9 1 12 16	ST49_2022 ST50_2022 ST51_2022 ST51_2022_ TR01_2022 TR01_2022 TR01_2022 TR02_2022 TR02_2022	26.0 34.0 22.0 33	Rayfin PLE S Rayfin PLE S Rayfin PLE S Rayfin PLE S Rayfin PLE S	p - Plan Vie p - Plan Vie p - Plan Vie p - Plan Vie	10 10 10 10	N N N	N N N	USBL USBL USBL USBL	Sand. Muddy Muddy Covers ST33. L re-run Covers ST46.

Appendix XVII - Seapen and burrowing megafauna assessmer

Appendix XVII - Seapen and burrowing megafauna assessment									Density	Average		Average Density		Density	Average	Corystes	Total	Density of	Average Density
Filename	Field of View (m ²)	Burrow 1cm	Burrow 2cm	Burrow 3cm	Burrow 4cm	Burrow 5cm	Burrow 6cm	Burrow 7cm	of Burrows (m ²)	Burrow Density (m ²)	of 3+ cm Burrows (m ²)	of 3+ cm burrows (m ²)	Seapens	of Seapens (m²)	Seapen Density (m²)		burrowin g fauna	Burrowin	of burrowin g fauna
FLOMOR0222_5T02_2022_05_29_165623.jpg FLOMOR0222_5T02_2022_05_29_165706.jpg FLOMOR0222_ST02_2022_05_29_165757.jpg	0.35 0.32 0.34	0 11 7	1 3 0	1 0 1	0 0 0	0 0 0	0 0 0	0 0 0	6 44 24	23	3 0 3	2	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	(m²)
FLOMOR0222_5102_2022_05_29_165597.jpg FLOMOR0222_5102_2022_05_29_165844.jpg FLOMOR0222_5102_2022_05_29_165927.jpg FLOMOR0222_5103_2022_05_29_173503.jpg	0.33* 0.33* 0.33*	9 4 8	0	1 0 0	0	0	0	0	30 12 39		3 0 0	-	0	0		0	0	0 3 0	
FLOMOR0222_ST03_2022_05_29_173546.jpg FLOMOR0222_ST03_2022_05_29_173621.jpg	0.33* 0.33* 0.33*	6 2 14	3 3 1	1 1 1	0 0 0 0	0 1 0 0	0	0 0 0 0	33 18 48	33	6 3 3	4	0	0	0	0	0	0	0
FLOMOR0222_ST03_2022_05_29_173701.jpg FLOMOR0222_ST03_2022_05_29_173738.jpg FLOMOR0222_ST04_2022_06_01_042114.jpg FLOMOR0222_ST04_2022_06_01_042155.jpg	0.33* 0.33* 0.33*	5 4 4	2 1 0	2 0 2	0 3 0	0	0	0	48 27 27 18		6 12 6		0	0		0	0	0	
FLOMOR0222_ST04_2022_06_01_042241.jpg FLOMOR0222_ST04_2022_06_01_042306.jpg	0.33* 0.33*	3 6	2	4	0	0	0	0	27 21	26	12 3	6	0	0	0	0	0	0	0
FLOMOR0222_5T04_2022_06_01_042330.jpg FLOMOR0222_ST04_2022_06_01_042350.jpg FLOMOR0222_ST04_2022_06_01_042441.jpg	0.33* 0.33* 0.33*	5 5 10	2 2 3	1 0 0	0	0 1 1	0 0 0	0 0 0	24 24 42		3 3 3		0 0 0	0 0 0		0 0 0	0	0 0 0	
FLOMOR0222_ST05_2022_06_01_054919.jpg FLOMOR0222_ST05_2022_06_01_055046.jpg FLOMOR0222_ST05_2022_06_01_055151.jpg	0.33* 0.33* 0.33*	9 1 4	0 0 0	1 4 0	0	4 0 0	0 0 0	0 0 0	42 15 12	23	15 12 0	8	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0
FLOMOR0222_ST05_2022_06_01_055340.jpg FLOMOR0222_ST05_2022_06_01_055453.jpg FLOMOR0222_ST06_2022_06_01_061209.jpg	0.33* 0.33* 0.33*	5 3 10	1 1 2	0 1 1	2 0 0	0 1 2	0 1 0	0 0 0	24 21 45		6 9 9		0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	
FLOMOR0222_ST06_2022_06_01_061244.jpg FLOMOR0222_ST06_2022_06_01_061349.jpg FLOMOR0222_ST06_2022_06_01_061446.jpg	0.33* 0.33* 0.33*	9 2 7	4 3 1	1 1 4	0 1 0	0 0 0	0 0 0	0 0 0	42 21 36	33	3 6 12	6	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0 0	0
FLOMOR0222_ST06_2022_06_01_061555.jpg FLOMOR0222_ST06_2022_06_01_061635.jpg FLOMOR0222_ST11_2022_05_29_175924.jpg	0.33* 0.33* 0.35	6 5 6	4 0 2	0 1 3	1 1 0	0 0 0	0 0 0	0	33 21 31		3 6 9		0 0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	
FLOMOR0222_ST11_2022_05_29_180012.jpg FLOMOR0222_ST11_2022_05_29_180037.jpg FLOMOR0222_ST11_2022_05_29_180118.jpg	0.36 0.33* 0.33*	7 2 7	4 0 1	1 0 0	0 0 0	0 0 0	0 0 0	0	34 6 24		3 0 0		0 0 0 0	0 0 0		0 0 0	0 0 0	0 0 0 0	
FLOMOR0222_ST11_2022_05_29_180200.jpg FLOMOR0222_ST12_2022_05_29_182109.jpg FLOMOR0222_ST12_2022_05_29_182151.jpg	0.33* 0.30 0.33*	8 8 8	1 4 3	1 1 0	0 0 0	3 0 0	0 0 0	0 0 0	39 43 33	37	12 3 0	4	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0
FLOMOR0222_ST12_2022_05_29_182229.jpg FLOMOR0222_ST12_2022_05_29_182310.jpg FLOMOR0222_ST12_2022_05_29_182419.jpg	0.33* 0.33* 0.33*	12 10 11	7 2 7	0 0 3	0 0 0	0 0 0	0 0 0	0	57 36 63		0 0 9		0 0 0	0 0 0		0 0 0	0 0 0	0 0 0 0	
FLOMOR0222_ST13_2022_06_01_075355.jpg FLOMOR0222_ST13_2022_06_01_075439.jpg FLOMOR0222_ST13_2022_06_01_075517.jpg	0.34 0.33* 0.31	4 8 2	1 0 2	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	18 24 13	-	3 0 0		0 0 0	0 0 0		0 0 0	0 0 0	0 0 0 0	
FLOMOR0222_ST13_2022_06_01_075614.jpg FLOMOR0222_ST13_2022_06_01_075715.jpg FLOMOR0222_ST13_2022_06_01_075815.jpg	0.33* 0.31 0.33*	2 5 2	1 1 1	0 0 1	0 0 0	0	0 0 0	0	9 19 12	16	0 0 3	1	0 0 0 0	0 0 0 0	0	0	0	0 0 0 0	0
FLOMOR0222_ST14_2022_06_01_072812.jpg FLOMOR0222_ST14_2022_06_01_072847.jpg	0.33	7 7 6	2 3 3	1 1 3	0	0	0	0	30 35		3		0 0 0 0 0 0	0		0	0	0	
FLOMOR0222_ST14_2022_06_01_072919.jpg FLOMOR0222_ST14_2022_06_01_073119.jpg FLOMOR0222_ST14_2022_06_01_073209.jpg FLOMOR0223_ST14_2022_06_01_073206_jpg	0.37	13 9	2	0	1	0	0	0	38 43 49	- 35	10 3 8	5	0	0	0	0	0	0	0
FLOMOR0222_ST14_2022_06_01_073256.jpg FLOMOR0222_ST15_2022_06_01_070345.jpg FLOMOR0222_ST15_2022_06_01_070445.jpg FLOMOR0222_ST15_2022_06_01_070345.jpg	0.33* 0.30 0.32	3 7 12	0 0 1	2 0 1	0 0 0	0 0 0	0 0 0	0 0 0	15 23 43		6 0 3		0 0 0 0	0 0 0		0 0 0	0 0 0	0 0 0 0	
FLOMOR0222_ST15_2022_06_01_070725.jpg FLOMOR0222_ST15_2022_06_01_071301.jpg FLOMOR0222_ST15_2022_06_01_071333.jpg FLOMOR0222_ST15_2022_06_01_071333.jpg	0.27 0.24 0.28	11 2 11	4 3 2	0 2 1	0 0 1	0 0 0 0	0 0 0	0 0 0	57 29 53	39	0 8 7	5	0 0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0 0	0
FLOMOR0222_ST15_2022_06_01_071412.jpg FLOMOR0222_ST15_2022_06_01_071440.jpg FLOMOR0222_ST19_2022_05_28_163320.jpg	0.30 0.30 0.39	6 11 4	0 0 1	2 1 2	0	0 1 0	0 0 0	0 0 0	27 44 18	1	7 7 5		0 0 0	0 0 0		0 0 0	0	0 0 0	
FLOMOR0222_ST19_2022_05_28_163337.jpg FLOMOR0222_ST19_2022_05_28_163424.jpg FLOMOR0222_ST19_2022_05_28_163448.jpg	0.43 0.43 0.44	3 12 11	1 0 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	9 28 28	19	0 0 2	1	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0 0	0
FLOMOR0222_ST19_2022_05_28_163531.jpg FLOMOR0222_ST20_2022_05_28_160824.jpg FLOMOR0222_ST20_2022_05_28_160901.jpg	0.38 0.37 0.40	5 10 12	0 2 3	0 0 0	0	0 0 0	0 0 0	0 0 0	13 32 37	-	0		0 0 0	0 0 0		0 0 0	0	0 0 0	
FLOMOR0222 ST20_2022_05_28_161212.jpg FLOMOR0222_ST20_2022_05_28_161240.jpg FLOMOR0222_ST20_2022_05_28_161313.jpg	0.42 0.89 0.41	15 10 16	2 1 0	0 2 3	0	0 0 0	0 0 0	0 0 0	40 15 47	34	0 2 7	2	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0 0	0
FLOMOR0222_ST21_2022_05_28_140248.jpg FLOMOR0222_ST21_2022_05_28_140248.jpg FLOMOR0222_ST21_2022_05_28_140334.jpg FLOMOR0222_ST21_2022_05_28_140414.jpg	0.35 0.40 0.39	6 16 15	3 1 5	3 4 0	0	0	0	0	34 53 52		9 10 0		0 0 0 0	0		0	0	0	
FLOMOR0222_ST21_2022_05_28_140511.jpg FLOMOR0222_ST21_2022_05_28_140553.jpg	0.43 0.40	7 6	1 2	1 0 3	0	0	0	0	21 20	- 38	2	5	0	0	0	0	0	0	0
FLOMOR0222_ST21_2022_05_28_140638.jpg FLOMOR0222_ST23_2022_05_28_131952.jpg FLOMOR0222_ST23_2022_05_28_132036.jpg	0.40 0.36 0.36	14 11 11	1 1 4	0	0 0 2	0 0 0	0	0	45 33 52		8 0 11		0	0	0	0 0 0	0	0 0 0	
FLOMOR0222_ST23_2022_05_28_132116.jpg FLOMOR0222_ST23_2022_05_28_132157.jpg FLOMOR0222_ST23_2022_05_28_132237.jpg	0.36 0.38 0.37	2 4 13	2 1 0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	14 13 35	30	3 0 0	3	0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	0
FLOMOR0222_ST24_2022_06_01_083538.jpg FLOMOR0222_ST24_2022_06_01_083615.jpg FLOMOR0222_ST24_2022_06_01_083702.jpg	0.29 0.28 0.25	8 8 10	6 4 4	1 0 1	0 0 0	0 0 0	0 0 0	0 0 0	52 43 59	43	3 0 4	2	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0
FLOMOR0222_ST24_2022_06_01_083739.jpg FLOMOR0222_ST24_2022_06_01_083836.jpg FLOMOR0222_ST24_2022_06_01_083941.jpg	0.29 0.33* 0.31	6 9 12	1 1 3	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	24 33 48	-	0 3 0		0 0 0	0 0 0		0 0 0	0 0 0	0 0 0 0	
FLOMOR0222_ST25_2022_06_01_102429.jpg FLOMOR0222_ST25_2022_06_01_102631.jpg FLOMOR0222_ST25_2022_06_01_102709.jpg	0.33* 0.33* 0.33*	0 0 1	0 0 1	0 1 0	1 1 0	0 0 0	0 0 0	0	3 6 6	8	3 6 0	2	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0 0	0
FLOMOR0222_ST25_2022_06_01_102743.jpg FLOMOR0222_ST25_2022_06_01_102810.jpg FLOMOR0222_ST29_2022_05_29_115040.jpg	0.33* 0.33* 0.48	3 4 12	1 0 5	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	12 12 35		0 0 0		0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	
FLOMOR0222_ST29_2022_05_29_115108.jpg FLOMOR0222_ST29_2022_05_29_115157.jpg FLOMOR0222_ST29_2022_05_29_115233.jpg	0.43 0.44 0.43	13 13 14	4 1 5	1 1 1	0 0 0	0 0 0	0 0 0	0 0 0	42 34 46	36	2 2 2	1	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0
FLOMOR0222_ST29_2022_05_29_115334.jpg FLOMOR0222_ST30_2022_05_28_152738.jpg FLOMOR0222_ST30_2022_05_28_152813.jpg	0.44 0.38 0.32	8 9 6	1 1 0	0 1 1	0 0 0	0 0 0	0 0 0	0 0 0	20 29 22		0 3 3		0 0 0	0 0 0		0 0 0	0 0 0	0 0 0 0	
FLOMOR0222_\$T30_2022_05_28_152857.jpg FLOMOR0222_\$T30_2022_05_28_152933.jpg FLOMOR0222_\$T30_2022_05_28_153451.jpg	0.33* 0.38 0.33*	8 13 2	2 1 7	0 0 1	0 0 0	0	0 0 0	0	30 37 30	30	0 0 3	2	0 0 0	0 0 0	0	0	0 1 0	0 3 0	1
FLOMOR0222 ST31_2022 05_28_150351.jpg FLOMOR0222 ST31_2022 05_28_150508.jpg FLOMOR0222_ST31_2022_05_28_150523.jpg	0.33* 0.33* 0.33*	3 5 4	4 5 3	1 3 0	0 0 0	0	0 0 0	0	24 39 21	29	3 9 0	3	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0 0	0
FLOMOR0222_ST31_2022_05_28_150628.jpg FLOMOR0222_ST31_2022_05_28_151125.jpg FLOMOR0222_ST34_2022_05_29_183948.jpg	0.37 0.34 0.33*	11 8 4	0 1 5	1 0 3	0	0	0	0	33 26 36		3 0 9		0	0		0	0	0	
FLOMOR0222_ST34_2022_05_29_184028.jpg FLOMOR0222_ST34_2022_05_29_184028.jpg FLOMOR0222_ST34_2022_05_29_184101.jpg FLOMOR0222_ST34_2022_05_29_184154.jpg	0.36 0.34 0.34	11 5 6	4 2 3	4 1 0	0	0	0	0 0 0 0	52 52 24 27	33	11 3 0	6	0 0 0 0 0	0	0	0	0	0	0
FLOMOR0222_ST34_2022_05_29_184226.jpg FLOMOR0222_ST38_2022_05_28_133705.jpg	0.36	4 7	3	1 0	2	0	0	0	28 29	-	8 0		0	0		0	0	0	
FLOMOR0222_ST38_2022_05_28_133745.jpg FLOMOR0222_ST38_2022_05_28_133829.jpg FLOMOR0222_ST38_2022_05_28_133926.jpg	0.37 0.35 0.32	2 11 5	1 2 2	0 1 1	0	1 0 0	0 0 0	0 0 0	11 41 25	33	3 3 3	2	0 0 0	0 0 0	0	0 0 0	0	0 0 0	0
FLOMOR0222_ST38_2022_05_28_134001.jpg FLOMOR0222_ST42_2022_05_29_155901.jpg FLOMOR0222_ST42_2022_05_29_155930.jpg	0.33* 0.36 0.32	17 5 6	2 0 1	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	61 14 22		3 0 0		0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	
FLOMOR0222_5T42_2022_05_29_160011.jpg FLOMOR0222_ST42_2022_05_29_160046.jpg FLOMOR0222_ST42_2022_05_29_160125.jpg FLOMOR0222_ST42_2022_05_29_160125.jpg	0.35 0.37 0.37	4 11 15	0 1 0	1 1 0	0 0 0	0 0 0	0 0 0	0 0 0	14 35 41	25	3 3 0	1	0 0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0 0	0
FLOMOR0222_ST45_2022_06_01_081724.jpg FLOMOR0222_ST45_2022_06_01_081757.jpg FLOMOR0222_ST45_2022_06_01_081851.jpg	0.27 0.29 0.27	2 0 0	0 0 0 0	0 2 3	0 0 0	0 0 0	0 0 0	0 0 0	7 7 11	10	0 7 11	4	0 0 0	0 0 0	0	0 0 0	0	0 0 0	0
FLOMOR0222_ST45_2022_06_01_081935.jpg FLOMOR0222_ST45_2022_06_01_082011.jpg FLOMOR0222_ST45_2022_06_01_082040.jpg	0.28 0.31 0.33*	1 4 5	0 0 0	0 0 0	0 0 0	1 0 0	0 0 0	0 0 0	7 13 15		4 0 0		0 0 0	0 0 0		0 0 0	0	0 0 0	
FLOMOR0222_ST51_2022_06_01_064348.jpg FLOMOR0222_ST51_2022_06_01_064817.jpg FLOMOR0222_ST51_2022_06_01_064901.jpg	0.29 0.29 0.25	8 2 4	0 2 1	0 2 0	0 0 0	0 1 0	0 0 0	0 0 0	28 24 20	28	0 10 0	3	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0
FLOMOR0222_ST51_2022_06_01_064958.jpg FLOMOR0222_ST51_2022_06_01_065159.jpg FLOMOR0222_TR02_2022_06_01_093131.jpg	0.27 0.29 0.33*	0 16 11	2 0 0	0 2 0	0 0 0	0 0 0 0	0 0 0	0 0 0	7 62 33		0 7 0		0 0 0	0 0 0 0		0 0 0	0 0 0	0 0 0 0	
FLOMOR0222_TR02_2022_06_01_093229.jpg FLOMOR0222_TR02_2022_06_01_093223.jpg FLOMOR0222_TR02_2022_06_01_093329.jpg	0.33* 0.33* 0.33*	2 4 4	2 1 1	0 0 0 0	0	0	0	0	12 15 15		0		0 0 0 0	0 0 0		0 0 0	0	0 0 0	
FLOMOR0222_TR02_2022_06_01_09340.jpg FLOMOR0222_TR02_2022_06_01_09340.jpg FLOMOR0222_TR02_2022_06_01_093519.jpg FLOMOR0222_TR02_2022_06_01_093553.jpg	0.33* 0.33* 0.33*	1 4 5	2 0 4	0 1 0	0	0	0	0 0 0 0	9 15 27		0 3 0		0 0 0 0	0		0	0	0	
FLOMOR0222_rR02_2022_06_01_09353.jpg FLOMOR0222_rR02_2022_06_01_093629.jpg FLOMOR0222_rR02_2022_06_01_093750.jpg FLOMOR0222_rR02_2022_06_01_093917.jpg	0.33* 0.33* 0.28 0.29	6 0 0	4 0 0 0	0 0 0 0 0	0	0	0	0	27 21 0 0	15	0 3 0 0	1	0 0 0 0 0 0	0	0	0	0	0	0
FLOMOR0222_TR02_2022_06_01_094004.jpg FLOMOR0222_TR02_2022_06_01_094106.jpg	0.31 0.27	8	0 1 3 0	0 0 0 0 0	0	0	0	0 0 0 0 0	29 22		0 0 4		0	0		0	0	0	
FLOMOR0222_TR02_2022_06_01_094449.jpg FLOMOR0222_TR02_2022_06_01_095509.jpg FLOMOR0222_TR02_2022_06_01_095627.jpg FLOMOR0222_TR02_2022_06_01_095627.jpg	0.26 0.29 0.33*	1 1 1 2	0	1 0	0	0 0 0 0 0	1 0 0	1	8 10 9	1	7		0 0 0 0	0 0 0		0	0	0	
FLOMOR0222_TR03_2022_06_01_085547.jpg FLOMOR0222_TR03_2022_06_01_085625.jpg FLOMOR0222_TR03_2022_06_01_085701.jpg FLOMOR0222_TR03_2022_06_01_085701.jpg	0.25 0.27 0.28	2 7 9	1 1 0	0 0 0 0	0 0 0	2 0 0	0 0 0	0 0 0	20 29 32		8 0 0		0 0 0 0	0 0 0		0 0 0	0 0 0	0 0 0 0	
FLOMOR0222_TR03_2022_06_01_085739.jpg FLOMOR0222_TR03_2022_06_01_085825.jpg FLOMOR0222_TR03_2022_06_01_085912.jpg	0.34 0.28 0.29	2 1 7	1 0 1	0 0 1	0 0 0	0 0 1	0 0 0	0	9 4 34		0 0 7		0 0 0	0 0 0		0 0 0	0	0 0 0	
FLOMOR0222_TR03_2022_06_01_085959.jpg FLOMOR0222_TR03_2022_06_01_090056.jpg FLOMOR0222_TR03_2022_06_01_090129.jpg	0.26 0.30 0.26	4 9 4	4 4 1	1 0 3	0 0 1	0 0 0	0 0 0	0 0 0	35 44 35		4 0 16		0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	
FLOMOR0222_TR03_2022_06_01_090221.jpg FLOMOR0222_TR03_2022_06_01_090250.jpg FLOMOR0222_TR03_2022_06_01_090316.jpg	0.34 0.33* 0.31	4 0 4	2 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	18 0 16		0 0 0		0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	
FLOMOR0222_TR03_2022_06_01_090348.jpg FLOMOR0222_TR03_2022_06_01_090348.jpg FLOMOR0222_TR03_2022_06_01_090424.jpg FLOMOR0222_TR03_2022_06_01_090501.jpg	0.29 0.28 0.29	7 7 0	1 2 0	1 1 0	0	0	0	0 0 0 0	31 43 0	20	3 11 0	3	0 0 0 0	0	0	0	0	0	0
FLOMOR0222_TR03_2022_06_01_090534.jpg FLOMOR0222_TR03_2022_06_01_090534.jpg FLOMOR0222_TR03_2022_06_01_090616.jpg FLOMOR0222_TR03_2022_06_01_090653.jpg	0.32 0.30 0.30	0 0 4	0 0 2	0	0	0	0	0 0 0 0	0 0 20		0		0 0 0 0	0		0	0	0	
FLOMOR0222_TR03_2022_06_01_090718.jpg FLOMOR0222_TR03_2022_06_01_090756.jpg	0.30	7 4	1 0	3	1 0	0	0	0	40 13		13 0		0	0		0	0	0	
FLOMOR0222_TR03_2022_06_01_090831.jpg FLOMOR0222_TR03_2022_06_01_090909.jpg FLOMOR0222_TR03_2022_06_01_090945.jpg FLOMOR0222_TR03_2022_06_01_090945.jpg	0.33* 0.29 0.30 0.22*	3 3 8	1 1 0	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	12 17 27		0 3 0		0 0 0 0	0 0 0		0	0	0	
FLOMOR0222_TR03_2022_06_01_091022.jpg FLOMOR0222_TR03_2022_06_01_091058.jpg FLOMOR0222_TR03_2022_06_01_091134.jpg	0.33* 0.27 0.28	1 5 4	0 3 0	0 0 0	0 0 1	0 1 0	0 0 0	0 0 0	3 33 18		0 4 4		0 0 0	0 0 0		0 0 0	0	0 0 0	
FLOMORO222_TR03_2022_06_01_091210.jpg	0.31	3	1	0	0	0	0	0	13		0		0	0		0	0	0	

	III - Biotoping													
Station ST01	Sampled Lat 53.759304	Sampled Long -3.613803	Easting 459534.014	Northing 5956917.06	Textural Group Gravelly Muddy Sand	Mean Grain Size 536.1	Macro Group	A52	EUNIS Level 4 A5.35	EUNIS Level S A5.351	EUNIS name 2007-11 (Amphiura filiformis), (Mysella bidentata) and (Abra nitida) in	JNCC 04.05 code SS.SMu.CSaMu.AfilMysAnit	Physical Mismatch Yes	Note Whits gravel content is high in this sample it is not xeen to be driving the biological community. The driving factor here is the muddy sand content which aligns with the note on the biotope for all other mismatches of this nature below.
ST02	53.761874	-3.588412	461210.296	5957188.867	Muddy Sand	237.7	A	A5.2	A5.35	A5.351	circalittoral sandy mud (Amphiura filiformis), (Mysella bidentata)	SS.SMu.CSaMu.AfilMysAnit	Yes	This community occurs in muddy sands in moderately deep water (Hiscock 1984 Picton et al. 1994) and may be related to the 'offshore muddy sand association' described by other workers (Jones 1951; Thorson 1957; Macile 1980).
3102	33.761874	*3.300412	461210.296	3337100.007	Modey sand	237.7	~	A12	A3.35	A3.351	and (Abra nitida) in circalittoral sandy mud (Amphiura filiformis),	55.5MU.Camu.AllimysAllit	Tes .	Also note that a confirmed cove record for this community has been recorded in proximity to the Morecambe GWF site location previously (Source: Https://mh.jiocc.gov.uk/biotopes/inccmec60000786)
ST03	53.761656	-3.567073	462616.772	5957153.161	Muddy Sand	141.5	A	A5.2	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	Yes	
ST04	53.761759	-3.544359	464114.242	5957152.832	Muddy Sand	87.54	A	A5.3	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
ST05	53.761856	-3.521741	465605.363	5957152.496	Muddy Sand	54.74	A	A5.3	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
ST06	53.759793	-3.502608	466865.056	5956913.891	Muddy Sand	55.26	A	A5.3	A5.35	A5.351	(Amphiura filiformis), [Mysella bidentata] and (Abra nitida) in	SS.SMu.CSaMu.AfilMysAnit	No	
ST07	53.783527	-3.681098	455123.35	5959652.413	Sand	321.7	в	A5.2	A5.25	A5.252	[Abra prismatica], [Bathyporeia elegans]	SS SSa.CFiSa ApriBatPo	No	
											and polychaetes in circalittoral fine sand (Abra prismatica),			
ST08	53.783508	-3.658678	456600.557	5959636.344	Slightly Gravelly Sand	381	В	A5.2	A5.25	A5.252	[Bathyporeia elegans] and polychaetes in circalittoral fine sand [Amphiura filiformis].	SS SSa CFISa ApriBatPo	No	
ST09	53.827169	-3.544904	464134.196	5964430.292	Muddy Sand	73.82	A	A5.3	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
ST10	53.783911	-3.61298	459611.85	5959654.219	Sand	305.2	с	A5.2	A5.25	A5.252	[Abra prismatica], [Bathyporeia elegans] and polychaetes in circalittoral fine sand	SS SSa CFi Sa ApriBat Po	No	
ST11	53.774553	-3.58597	461382.877	5958598.062	Muddy Sand	146.7	A	A5.2	A5.35	A5.351	(Amphiura filiformis), (Mysella bidentata) and (Abra nitida) in	SS.SMu.CSaMu.AfilMysAnit	Yes	See comment in cell O3.
ST12	53.784084	-3.567493	462609.078	5959648.52	Muddy Sand	128.8	A	A5.3	A5.35	A5.351	circalittoral sandy mud [Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in	SSSMu.CSaMu.AfilMysAnit	No	
ST13	53.783301	-3.541898	464294.746	5959548.265	Slightly Gravelly Muddy Sand	156	A	A5.2	A5.35	A5.351	circalittoral sandy mud [Amphiura filiformis], [Mysella bidentata]	SSSMu.CSaMu.AfilMysAnit	Yes	This community occurs in modely sands in moderately deep water (Hiscock 1984, Picton et al. 1994) and may be related to the 'offshore modely and association described by other workers (Lores 1951, Thoson 1957). Mackie 1990,
					,,						and (Abra nitida) in circalittoral sandy mud (Amphiura filiformis),			Also note that a confirmed core record for this community has been recorded in powelly to the Monecambe QMF site location previously (Source Histor/Intel) (record previously (Source History)). The second
ST14	53.774294	-3.522241	465582.571	5958536.525	Muddy Sand	133.3	A	A5.2	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud [Amphiura filiformis].	SS.SMu.CSaMu.AfilMysAnit	Yes	Also note that a confirmed core record for this community has been recorded in proumity to the Morecambe OWF site location previously (Source: https://mhc.incc.gov.uk/biotopes/jnccmncc00000786)
ST15	53.781083	-3.508254	466509.741	5959285.119	Muddy Sand	73.24	A	A5.3	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	This manuality arous is much see to be advected at
ST16	53.805621	-3.727088	452118.354	5962140.503	Slightly Gravelly Muddy Sand	295.3	A	A5.2	A5.35	A5.351	(Amphiura filiformis), (Mysella bidentata) and (Abra nitida) in circalittoral sandy mud	SS SMu.CSaMu.AfilMysAnit	Yes	This community eccurs in muckly and is in moderately deep water Miscock 1984. Proton et al. 1994) and may be related to the 'offshore muddy and association' described by other worken (Jones 1951), Thorson 1957, Mackie 1990, Alio note that a confirmed core record for this community has been recorded in powmity to the Morecambe OWF site location previously Giocer with privile rule, equivalent polycomerch COMD016
ST17	53.805812	-3.704357	453615.431	5962146.618	Slightly Gravelly Sand	340,4	в	A5.2	A5.25	A5.252	(Abra prismatica), [Bathyporeia elegans] and polychaetes in circalittoral fine sand	SS.SSa.CFiSa ApriBatPo	No	
ST18	53.801836	-3.674799	455557.767	5961685.359	Muddy Sand	97.8	A	A5.3	A5.35	A5.351	(Amphiura filiformis), (Mysella bidentata) and (Abra nitida) in circalittoral sandy mud	SSSMu.CSaMu.AfilMysAnit	No	
ST19	53.801793	-3.636472	458081.88	5961657.323	Muddy Sand	209.3	A	A5.2	A5.35	A5.351	(Amphiura filiformis), (Mysella bidentata) and (Abra nitida) in	SS.SMu.CSaMu.AfilMysAnit	Yes	This community occurs in muddy sands in moderately deep water (Hiscock 1984, Picton et al. 1994) and may be related to the "offshore muddy sand association" desribed by other workers (Jones 1951; Thorson 1957; Mackle 1990;
5720	53.801598	-3.612716	459646.223	5961621.884	Muddy Sand	137.6	A	A5.2	A5.35	A5.351	circalittoral sandy mud (Amphiura filiformis), [Mysella bidentata]	SS.SMu.CSaMu.AfilMysAnit	Yes	Also note that a confirmed core necod for this community has been recorded in proximity to the Morecambe OWF site location previously (Source https://mic.incc.gou/uk/biotopes/inccmrce00000788) in its community cores in modely and its in moderately deep water (Hiscock 1984, Picton et al. 1994) and may be related to the 'offithore muddy and association' described by other workers (Jones 1951; Thorson 1957, Mackie 1990).
											and [Abra nitida] in circalittoral sandy mud [Amphiura filiformis], [Mysella bidentata]			Also note that a confirmed core record for this community has been recorded in prounity to the Morecambe OWF site location previously (Source https://mhc.jncc.gov.uk/biotopes/jnccmnec00000786)
ST21	53.801321	-3.59044	461113.065	5961578.599	Muddy Sand	96.58	A	A5.3	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud [Amphiura filiformis].	SS.SMu.CSaMu.AfilMysAnit	No	This community occurs in muddy sands in moderately deep water (Hiscock 1984; Picton et al. 1994) and may be related to the 'offshore muddy sand association' discribed by other workers (Jones 1991; Thonson 1997; Massie 1990).
ST22	53.815461	-3.572905	462280.667	5963142.33	Sand	299.8	A	A5.2	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud [Amphiura filiformis],	SS.SMu.CSaMu.AfilMysAnit	Yes	many particular securities of ender of some tracker power (style), neuron (style), means (style). Also note that a comment of the community has been recorded in proximity to the Morecambe CNW site location previously (Source https://mhc.incc.gov.uk/biotopes/jnccmvcc00000786)
ST23	53.806187	-3.544127	464167.405	5962095.542	Muddy Sand	60.23	A	A5.3	A5.35	A5.351	[Amphiura filtormis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
ST24	53.807311	-3.521396	465665.257	5962209.349	Muddy Sand	80.38	A	A5.3	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
ST25	53.806922	-3.499428	467111.566	5962155.677	Muddy Sand	46.93	A	A5.3	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
ST26	53.827841	-3.708422	453372.205	5964600.17	Slightly Gravelly Sand	293.9	D	A5.2	A5.25	A5.252	(Abra prismatica), (Bathyporeia elegans) and polychaetes in circalittoral fine sand	SS.SSa.CFiSa.ApriBatPo	No	
ST27	53.828498	-3.681926	455116.869	5964656.171	Sand	284.8	с	A5.2	A5.25	A5.252	[Abra prismatica], [Bathyporeia elegans] and polychaetes in	SS.SSa.CFiSa.ApriBatPo	No	
ST28	53.828598	-3.65917	456614.664	5964653.124	Muddy Sand	206	A	A5.2	A5.35	A5.351	(Amphiura filiformis), (Mysella bidentata) and (Abra nitida) in	SSSMu.CSaMu.AfilMysAnit	Yes	This community occurs in muddy sands in moderately deep water (Hiscock 1984, Picton et al. 1994) and may be related to the 'offshore muddy sand association' described by other workers (Jones 1951; Thonson 1957; Mackie 1995).
ST29	53.829856	-3.638155	457999.094	5964780.482	Muddy Sand	106.1	A	A5.2	A5.35	A5.351	circalittoral sandy mud [Amphiura filiformis], [Mysella bidentata]	SS.SMu.CSaMu.AfilMysAnit	Yes	Alio note that a confirmed core necrof for this community has been recorded in proximity to the Morecambe OWF site location previously (Source: https://mic.incc.gou/uk/biotopsel/nccmnc00000788) This community cores in modely asals in moderately deep water (Hiscok 1984, Picton et al. 1994) and may be related to the 'offshore muddy and association' described by other workers (Jones 1951; Thorson 1957, Mackie 1990).
											and [Abra nitida] in circalittoral sandy mud [Amphiura filiformis], [Mysella bidentata]			Also note that a confirmed core record for this community has been recorded in pownity to the Monecambe OWF site location previously (Source Thisty)/mich (creg countricity)/biologes)(cremcend/2000788). This community access in model such as moderately deep water (Hiscock 1984, Reton et al. 1994) and may be related to the offshore modely and association described by poten vorkers (Cores 1975). Thorson 1975, Mukei 1990.
5730	53.827344	-3.609522	459881.227	5964484.349	Muddy Sand	160.9	A	A5.2	A5.35	A5.351	and (Abra nitida) in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	Yes	Also note that a confirmed core record for this community has been recorded in proximity to the Morecambe OWF site location previously (Source https://mhc.incc.gov.uk/biotopes/inccmrec00000786)
ST31	53.828894	-3.590863	461110.737	5964646.436	Muddy Sand	63.28	A	A5.3	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	This community occurs in muddy sands in moderately deep water (Hiscock 1984, Picton et al. 1994) and may be related to the "offshore"
5732	53.850952	-3.682267	455118.434	5967154.527	Slightly Gravelly Muddy Sand	251.1	A	A5.2	A5.35	A5.351	(Amphiura filiformis), (Mysella bidentata) and (Abra nitida) in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	Yes	moldly sand association' described by other workers (Jones 1951; Thonon 1952; Macke 1990). Also note that a confirmed core record for this community has been recorded in promity to the Morecambe OWF site location previously (Source Tritery/mk) prcc_provid/biologes/prccmcc/000078(i)
ST34	53.774219	-3.557447	463262.31	5958545.807	Muddy Sand	125.9	A	A5.2	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	Yes	This community accurs in muddy sands in moderately deep water (Hiscock 1984, Picton et al. 1994) and may be related to the offshore muddy sand association described by other workers (Jones 1995; Thorons 1995; Maskie 1996). Also note that a confirmed core record for this community has been recorded in posmity to the Morecambe CWF site location
ST35	53.754577	-3.574825	462099.42	5956369.61	Sand	259.6	A	A5.2	A5.35	A5.351	(Amphiura filiformis), [Mysella bidentata] and (Abra nitida) in	SSSMu.CSaMu.AfilMysAnit	Yes	perivolary (bourse http://mb.icr.ego.uk/biologos/ip/cmcm00000780 http://mb.icr.emuily.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emuil.com/ipr.icr.emu
ST36	53.843904	-3.699529	453975.187	5966381.368	Slightly Gravelly Muddy Sand	282.2	A	A5.2	A5.35	A5.351	circalittoral sandy mud [Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in	SSSMu.CSaMu.AfilMysAnit	Yes	previously (Source: https://mci.acc.aou.uk/biologoes/inccmec00000788) This community occurs in muddy sands in moderately deep water (Hiscock 1994, Picton et al. 1994) and may be related to the 'offshore muddy sand association' described by other workers (Jones 1991; Thorson 1957; Mackie 1990).
ST37	53.840292	-3.666346	456154.618	5965958.52	Sand	269.2	D	A5.2	A5.25	A5.252	circalittoral sandy mud (Abra prismatica), [Bathyporeia elegans]	SS SSa.CFiSa ApriBatPo	No	Also note that a confirmed core record for this community has been recorded in proximity to the Morecambe OWF site location previously (Source: https://mhciprcc.gov.uk/biotopsu/prccmrcr00000786)
											and polychaetes in circalittoral fine sand [Amphiura filiformis],			
ST38	53.797032	-3.557845	463256.054	5961084.075	Muddy Sand	41.52	A	A5.3	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud [Amphiura filiformis].	SS.SMu.CSaMu.AfilMysAnit	No	This community occurs in muddy sands in moderately deep water (Hiscock 1984, Picton et al. 1994) and may be related to the 'offshore mudde and executions' distribution by other and the other (Hence, 1981, Theorem, 1987, March 1990).
ST39	53.81734	-3.612816	459654.797	5963373.254	Muddy Sand	223.4	A	A5.2	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	Yes	muddy and association' described by other workers (Jones 1951; Thorson 1957; Mackle 1990). Also note that a confirmed core record for this community has been recorded in proxmity to the Morecambe OMF sile location previously (Source: https://mhc.jecc.gou.uk/biotoped/jnccmec00000196)
ST40	53.813522	-3.501498	466980.429	5962891.009	Muddy Sand	99.5	A	A5.3	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
ST41	53.778987	-3.634789	458170.012	5959119.084	Slightly Gravelly Sand	302.9	D	A5.2	A5.25	A5.252	[Abra prismatica], [Bathyporeia elegans] and polychaetes in circalittoral fine sand	SSSSa.CFISa.ApriBatPo	No	
ST42	53.77215	-3.629112	458537.406	5958355.045	Slightly Gravelly Sand	271	D	A5.2	A5.25	A5.252	[Abra prismatica], [Bathyporeia elegans] and polychaetes in circalittoral fine sand	SS.SSa.CFiSa ApriBatPo	No	
ST43	53.79397	-3.706298	453474.558	5960830.465	Slightly Gravelly Sand	381.4	В	A5.2	A5.25	A5.252	(Abra prismatica), [Bathyporeia elegans] and polychaetes in circalittoral fine sand	SS.SSa.CFiSa ApriBatPo	No	
ST44	53.81864	-3.679814	455245.347	5963558.038	Slightly Gravelly Sand	261.6	A	A5.2	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in	SS.SMu.CSaMu.AfilMysAnit	Yes	PSD data shows <0.5% gravel so this is essentially sand or muddy sand and therefore confident this aligns with the biotope description.
ST45	53.791874	-3.515421	466046.255	5960489.078	Sandy Mud	35.5	A	A5.3	A5.35	A5.351	circalittoral sandy mud [Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in	SS.SMu.CSaMu.AfilMysAnit	No	
ST46	53.823486	-3.504538	466788.125	5964000.98	Slightly Gravelly Sand	457.2	Outlier	A5.2	A5.25		circalittoral sandy mud Circalittoral fine sand (Amphiura filiformis),	SS.SSa.CFISa	No	
ST47	53.81485	-3.523885	465507.546	5963049.4	Muddy Sand	68.08	A	A5.3	A5.35	A5.351	[Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
ST48	53.808661	-3.677672	455375.793	5962446.451	Sand	287.5	D	A5.2	A5.25	A5.252	[Abra prismatica], [Bathyporeia elegans] and polychaetes in circalittoral fine sand	SS.SSa.CFISa.ApriBatPo	No	
ST49	53.816385	-3.552527	463623.071	5963234.429	Muddy Sand	77.32	A	A5.3	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
ST50	53.755689	-3.527025	465251.924	5956468.987	Slightly Gravelly Muddy Sand	83.49	A	A5.3	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
STS1	53.775545	-3.501759	466933.351	5958665.936	Slightly Gravelly Muddy Sand	122	A	A5.3	A5.35	A5.351	[Amphiura filiformis], [Mysella bidentata] and [Abra nitida] in circalittoral sandy mud	SS.SMu.CSaMu.AfilMysAnit	No	
			I	l							circulittoral sandy mud	l	I	I

Appendix XIX	Responses to NE ar	nd MMO comments	on the PEP

Natural England Advice	Morecambe OWF response
General	
Overall, Natural England is content that the specified survey will produce data sufficient to undertake benthic characterisation of the site and ground truth previously collected geophysical data.	Noted.
General	
Natural England notes that the proposed survey is broadly in line with the requirements set out in the "Best Practice Advice for Evidence and Data Standards", although some detail on analysis is missing (see comment on technical report below).	Noted.
4.3.1 Approach	
Natura England subset that consideration should as given to taking beneficial states which within states, deux data states been as the second state of the states of the states of the per states in packets any law schland within a single sample per states, neglicities any law schland state the communities present to device with with packet any and schlands. For them may, replicates would allow for temporal comparisons to les mails with the replicates are encommended for these purposes, respectively.	The sampling galan discipated in characteria the baseline transmission of the sample of the sample sample. The basility access the safe tor Ela perpose, for this perpose, and the sample sample sample sample sample characteria constraints and the sample sample characteria for the sample sample sample sample samples the sample sample sample sample sample samples the same samples at the samp sample sample samples and the same samples at the samp sample sample samples and the same samples at the samp sample sample samples and the same samples at the same sample samples samples and the same samples at the same sample samples samples and the same samples at the same samples at the samples samples samples samples are sample samples and the same samples at the same samples at the samples samples samples samples are samples samples samples samples samples are samples samples samples samples are samples at the same samples at the samples samples samples are samples at the same samples at the samples samples samples samples are samples at the samples samples samples samples samples samples samples samples samples samples samples are samples at the samples
6.4.2 Technical Report	
Litis deal has been provided beyond the contents of the Technical Report Them is no reference to include the will be used in the technical technical technical and technical technical to confirm whether the planned analysis will be adequire. Nature Standards in setting the Technical Add of Defines and Data Standards in setting the Technical Add of Defines and Data Standards in setting the Definition of the appropriate setting the plant by the plant of DCK data. We and writemen before the Technical Reports finalised to confirm the analysis will be different.	All of the raw data derived from the combined benthic characteristication works will undergo distribute always interpretation in rule will walk and distribute always interpretation in rule will have all of this "Officient Well Storkers and Data Standard". Human Horgins 2011s a databat technical report to provide address and the adatabat technical report to provide address and the adatabat technical report to provide address and the biotopes pre-employed develops strength and the adatabat technical report to provide address and the biotopes pre-employed develops strength and the adatabat technical report to provide address and the biotopes pre-employed develops indicate technical babate americanes. A per test practice of adatabate univariant and multimeter develops indicate the adatabate adatabated on direktivity indicate the adatabated indicated on direktivity indicate the adatabated indicated on direktivity indicate technical babate andress (2011). Data will be obtained and the conduction to the relativity indicate adatabated indicated on direktivity indicate and indicated indicated on direktivity indicate technical babates indicated on direktivity indicates and indicates indicated on direktivity indicates and within a indicated on direktivity indicates and within a indicated on direktivity indicates and within a indicated on direktivity indicates and within a indicates indicates and the indicates and within a indicates recorder.

Response to Marine Management Organisation (MMO) comment Reference	s on OEL Project Execution Plan (OEL_FLOMOR0222_PEP_V	(03) for Morecambe Offshore Windfarm (M	MO comments received 03 Aug OEL Response
ı	Project description	The proposed Network CoVIII (c) (C)(V) is in approximately 3D kilometers (ki), approximately 3D kilometers (ki), approximately 3D kilometers (kilometers), approximately approximately 3D kilometers (kilometers), approximately relatively approximately approximately approximately relatively approximately approximately approximately and a hattonally approximately approximately and approximately approximately approximately and approximately approximat	No action meeded
2.1	Contaminant sampling	In total, 50 fations were sampled and 20 samples selected for constminut naivylis. Each benthic grab sample alimed to collect 10 kms (L) of adiment. The Yroject Execution Plan stated that the sample locations were developed to provide adequate spatial coverage of the array area and to represent all main adiment types and features of conservation interest	No action needed
22	Contaminant sampling	The Shapeflies submitted for review show that the samples are approximately 1-2km apart. The 20 samples for contaminate analysis are adequately spaced and are shown in Figure 1 (Annex 1).	No action needed
2.3	Contaminant sampling	A Drop-Down camera (DDC) system was used prior to grab sampling to make sure the target location was free of obstructions or protected habitats and 4 DDC transects were completed.	No action needed
24	Contaminant sampling	Paragraph 5.4.3 of the Project Execution Plan provides details of the analysis to be carried out on the 20 contaminate samples tations which include Total Organic Carbon, Total Organic matter, Heavy metals including Arsenic, Organotin, PMHs, THC and PCBs. The analyses are to be carried out by SOCOTEC.	No action needed
23	Contaminant sampling	Whilst the number of sample stations collected appear to be appropriate as there is no dredge and slipospi alpaneed, the documentation provided does not state how many samples or sample volume will be taken at each of the 30 dations. It only alase that there will be 10.0 of sediment collected from the 50 dations with a volume of 500 S700 removed for particle are distribution (FS0) analysis (paragraph 5.4 of Project Exection Plan).	In section 5.3.3 of the technical report, an explanation of how sub- samples for chemical analysis have been obtained has been included
2.6	Contaminant sampling	The documentation provided for review does not include the sample analysis data from the 20 stations sampled. The MMO are unable to provide further recommendations without reviewing the	In section 5.3.3 of the technical report, a summary of the analysis to be done on the sediment chemistry
11	Benthic Sampling	data In total, 50 locations were planned for benthic sediment sample collection within the Morecambe OWF and Figure 1 Annes 1). Saabed imagery (Orop down video (DOV) was collected from each of these locations 'n porvide additional information on the sediment', Justistate unifice and to determine suitability to collect grab samples'.	samples is listed
3.2	Benthic Sampling	The usance were been been as sampling stations ranges approximately between 1 – 2 km. The MMO are satisfied that the sample density is sufficient to further our understanding of the baseline conditions at the site.	No action needed
13	Renthic Sampling	The MMO are unable to confirm if the benefits as averalized as destinuint, types adequately particularly from suttin the area marked as cancel and the second second second second adequately particularly from suttin the area marked as cancel and second second second adequately the second second second second second second second second second second whither the associated second	This comment has been addresed in action 4.1 of dependence of the subscription of the association of memory and the project. Table J links the project. Table J link
3.4	Benthic Sampling	The number of grab samples collected appears appropriate to characterise the Morecambe OWF area and identify regions of different sediment characteristics and	No action needed
15	Benthic Sampling	Indianal sisemblages. The number of OUV station (source) separate to be foor (Figure 3 (Annex 1)). However, restored A.4. of the Project Execution Fian includes brief descriptions of only three of these features (TBIO.03). The number of DOV transet should be clarified within the subsequent technical report. The report should also include the stationale of DOV station placement and detailed results of the seabed imagery analysis.	Section 4.2 of the technical report addresses this comment by providing table and maps illustrating where DDC stations were located and their rationale.
14	Benthic Sampling	The MMD recommend that bench emotioning build be conducted to validate the predictions make in the self of the predictions make in the self of the predictions make in the impacts to bench's assemblages and producted fragments are small of the impacts to bench's assemblages and producted fragments are small of the impacts to bench's assemblages and the Wind Turbins Generator (WTG) to the Generator (WTG) to the the shift could be monitored to areas the shift could be monitored to areas the securitation.	Aims and objectives of the technical report are presented in Section 1.3.
3.7	Benthic Sampling	The MMO recommend post-construction monitoring of the benthic assemblage and any protected features is carried out over non-consecutive years e.g., 1, 3 and 5 or 1, 5 and 10 years, to evidence the long-term impacts of Morecambe OWF on the benthis environment.	No action needed
3.8	Benthic Sampling	The Project Execution Plan assures that sample processing will be in line with national guidelines and accepted methodologies. The MMO welcome this. Analysis of the benthic grab data would be	No action needed
3.9	Benthic Sampling	expected to include a multivariate assessment of the assemblage within the site using widely accepted methods, such as that used in Clarke et al., 2006 and Clarke et al., 2016, and an assessment of the biological relevance of any duster groups identified in the context of temporal monitoring (e.g., location of monitoring stations).	All analyses carried out and presented in the technical report have been done in consideration of the most recent guidelines as per section 6 of the technical report.
43	Constructions	The Project Decution Plan provides details of an appropriate sample plan in support 1 during applications. This data abula datawa for adequata thanaterization of the sediment type and contaminate levels within the proposed OWT that a available from Advitibutes Echoconder and Saxolitate Multibutes Echoconder and Saxolitate Multibutes Echoconder and Saxolitate Multibutes Echoconder and Saxolitate Multibutes and Saxolitate Internet and advitational data); and asselin apple say (set of each set distribution and bettine individual data); and setual in during and bettine Saxonibage within the stor be characteristical deputy.	No action needed
4.2	Condusions	The MMO note that should any dredging or disposal activities become necessary, the MMO must be consulted to ensure the samples and analyses are adequate. This cannot be assessed currently without further information e.g., volume, depths.	Noted. No action needed.
4.3	Conclusions	The MMO are satisfied that the results of the baseline characterisation at Morecambe OWF should provide useful support to aid in future monitoring decisions. The MMO recommend that the technical	Noted. No action needed.
		report produced includes the information	